7.4 Practice Set

1. How can you tell by looking at a series if it is an arithmetic series, a geometric series, or neither? Give an example of each.

Evaluate each of the following series. State whether the series is arithmetic, geometric, or neither.

2.
$$\sum_{k=1}^{7} (2k+5)$$

3.
$$\sum_{k=1}^{10} (-3)^{k-1}$$

4.
$$\sum_{k=1}^{4} k^2$$

5.
$$\sum_{i=1}^{20} (4i - 3)$$

6.
$$\sum_{k=1}^{10} 5(2)^{k-1}$$

7.
$$\sum_{j=1}^{82} (-6j+1)$$

$$8. \qquad \sum_{k=1}^{3} \frac{k}{k+1}$$

9.
$$\sum_{i=1}^{18} (2 - 10i)$$

10.
$$\sum_{k=1}^{8} -2(3)^{k-1}$$

$$11. \qquad \sum_{k=1}^{6} \left(\frac{2}{5}\right)^{k-1}$$

12.
$$\sum_{j=12}^{25} (3j+8)$$

13.
$$\sum_{j=2}^{7} \left(\frac{1}{2}\right)^{j-1}$$

14.
$$\sum_{k=5}^{8} k(k-3)$$

Determine whether each infinite series converges or diverges. If it converges, evaluate the sum. Give a reason for your answer.

15.
$$\sum_{i=1}^{\infty} 2\left(\frac{1}{3}\right)^{i-1}$$

$$16. \qquad \sum_{k=1}^{\infty} 4 \left(\frac{3}{2}\right)^{k-1}$$

17.
$$\sum_{i=1}^{\infty} -3(2)^{i-1}$$

18.
$$\sum_{j=1}^{\infty} (2j-3)$$

$$19. \qquad \sum_{k=1}^{\infty} \left(\frac{4}{5}\right)^{k-1}$$

$$20. \qquad \sum_{i=5}^{\infty} 2\left(\frac{3}{4}\right)^{i-1}$$

Write each of the following series in summation notation. (Hint: You must find the general term for the associated sequence.)

$$21.$$
 $4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28$

$$3+6+12+24+48+96+192+384+768+1536$$

23.
$$\frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \frac{4}{81} + \cdots$$

Distributed Practice Problems

Give the domain for each of the following functions.

24.
$$y = \sqrt{x+2} - 1$$

25.
$$f(x) = \sqrt[3]{x+1}$$

26.
$$y = \log_2(x+4)$$

27.
$$y = \frac{3x}{x+2} + \frac{1}{\sqrt{x+5}}$$