7.2 Practice Set

1. What is the difference between an arithmetic sequence and a geometric sequence? Give an example of each.

Given each sequence described by the general formula below, give the $15^{\text {th }}$ term. Can you tell by looking at the form of the general term whether the sequence is arithmetic, geometric, or neither?
2. $a_{n}=2 n+5$
3. $a_{n}=3^{n-1}$
4. $a_{n}=n^{2}+7 n-2$
5. $a_{n}=-4 \cdot 2^{n-1}$
6. $a_{n}=\frac{1}{n}$
7. $a_{n}=\frac{5}{2} n$
8. $a_{n}=\frac{2}{3} n^{3}$
9. $a_{n}=(-1)^{n}$
10. $a_{n}=3-4 n$
11. $a_{n}=\frac{(-1)^{n}}{n+1}$
12. $a_{n}=\frac{1}{n^{2}}$

Determine whether each sequence is arithmetic, geometric, or neither. If arithmetic or geometric, give the common difference or ratio and the general term $\boldsymbol{a}_{\boldsymbol{n}}$. For any sequence that is neither, see if you can find the pattern.
13. $\{3,6,9,12,15, \ldots\}$
14.
$\{2,4,8,16,32, \ldots$.
15. $\{1,7,8,15,23,38, \ldots$.
16. $\{-1,5,-25,125,-625, \ldots$.
17.

$$
\left\{\frac{3}{4}, \frac{1}{2}, \frac{1}{3}, \frac{2}{9}, \frac{4}{27}, \frac{8}{81}, \ldots\right\}
$$

18.

$\{8,4,0,-4,-8,-12, \ldots$.
19. $\quad\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2}, \ldots.\right\}$
20.

$$
\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \frac{1}{36}, \ldots\right\}
$$

Distributed Practice Problems

Find the inverse of each of the following one-to-one functions and graph both functions on the same set of axes. State any domain restrictions that exist for the inverse function.
21. $g(x)=\sqrt{x}+4$
22. $y=(x+3)^{2}-1 ; \quad x \geq-3$

For each of the following pairs of functions, perform the following operations and give any restrictions on the domain of the resulting function:
$(f+g)(x),(f-g)(x),(f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$.
23. $\left\{\begin{array}{c}f(x)=6 x^{2}-3 x \\ g(x)=x-2\end{array}\right.$
24.

$$
\left\{\begin{array}{c}
f(x)=x^{3}+27 \\
g(x)=x+3
\end{array}\right.
$$

Graph the following function. Give the x-intercept(s), y-intercept, domain, range, and the equation(s) of any asymptote(s).
25. $y^{2}+4 x^{2}+8 x=15$

