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7.4  Arithmetic and Geometric Series 
 

When we add up the terms of arithmetic and geometric sequences, we 

call them arithmetic series and geometric series, respectively. We have 

formulas that we can use when evaluating these types of series. This is 

very helpful, especially if there are many terms to add! We can 

recognize an arithmetic series by the linear sequence it is summing (i.e. 

the general term will be linear in the index). We can also recognize a 

geometric series by the exponential sequence it is summing (i.e. the 

general term will be exponential in the index). 

Arithmetic Series 
 

One formula that will work for an arithmetic series (there are actually 

two formulas) was derived by Carl Friedrich Gauss (1777-1855): 

𝑆𝑛 = ∑ 𝑎𝑘 =
𝑛

2
(𝑎1 + 𝑎𝑛)

𝑛

𝑘=1

 

So if you add the first and the last terms together and then multiply by 

half of the number of terms, you will be done!  How is this possible? 

Gauss noticed that when adding the numbers from 1 to 100, a shortcut 

emerged if he paired up the numbers in a certain way – pair the first with 

the last, the second with the second to last, etc. – the sum is the same for 

these pairs and you will have 50 pairs (since you paired up 100 things, 

you divide by 2), so multiply by 50: 

                 1 + 2 + 3 + 4 + 5 + ⋯ + 96 + 97 + 98 + 99 + 100 

 

 

 1 + 100 = 101 

2 + 99 = 101 

3 + 98 = 101 
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So Gauss arrived at the fact that the first 100 numbers add to be    

    
100

2
(1 + 100) = 5050  

and if we generalize this to any sequence, we get the formula above.  We 

could prove this formula using the same method: 

            𝑆𝑛 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯ + 𝑎𝑛−3 + 𝑎𝑛−2 + 𝑎𝑛−1 + 𝑎𝑛 

 

 

 

 

We just need to show that we get the same sum when we pair the terms 

this way. Then they should all equal 𝑎1 + 𝑎𝑛. We can show this is true if 

we replace each term using the formula 𝑎𝑘 = 𝑎1 + (𝑘 − 1)𝑑 and do a 

little simplifying: 

      𝑎2 + 𝑎𝑛−1 = (𝑎1 + 𝑑) + (𝑎1 + (𝑛 − 2)𝑑)) 

         = 2𝑎1 + 𝑑 + 𝑛𝑑 − 2𝑑 

                               = 2𝑎1 + 𝑛𝑑 − 𝑑 

     = 2𝑎1 + (𝑛 − 1)𝑑 

     = 𝑎1 + 𝑎1 + (𝑛 − 1)𝑑 

     = 𝑎1 + 𝑎𝑛 

The same logic will apply for each of the middle sums. Therefore, 

𝑆𝑛 = ∑ 𝑎𝑘 =
𝑛

2
(𝑎1 + 𝑎𝑛)

𝑛

𝑘=1

 

 

 

   𝑎3 + 𝑎𝑛−2 

          𝑎2 + 𝑎𝑛−1 

𝑎1 + 𝑎𝑛 
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Now, let’s use this formula to compute some sums.  

Examples 
 

1.   Evaluate the following arithmetic series:     

  ∑(3𝑘 + 1)

30

𝑘=1

 

 

Here, we need to figure out what to plug into the formula for 

𝑛, 𝑎1, and 𝑎𝑛.  Looking at the form, we should be able to 

identify that 𝑛 = 30.  
 

 We can figure out 𝑎1 and 𝑎30 by plugging the values 

  𝑘 = 1 and 𝑘 = 30 into the general term 𝑎𝑘 = 3𝑘 + 1.  

 

    𝑎1 = 3 ∙ 1 + 1 = 4 

    𝑎30 = 3 ∙ 30 + 1 = 91 

 

                          ∑ 𝑎𝑘
𝑛
𝑘=1 =

𝑛

2
(𝑎1 + 𝑎𝑛) 

 

 ∑ (3𝑘 + 1)30
𝑘=1 =

30

2
(4 + 91)  

 

      = 15(95) 

 

      = 1,425 

 

2.  Evaluate the following arithmetic series:   

  ∑(7𝑖 − 4)

13

𝑖=1

 

 



 

689 
 

We need to figure out what to plug into the formula for 

𝑛, 𝑎1, and 𝑎𝑛.  Looking at the form, we should be able to 

identify that 𝑛 = 13.  
 

 We can figure out 𝑎1 and 𝑎13 by plugging the values 

  𝑖 = 1 and 𝑖 = 13 into the general term 𝑎𝑖 = 7𝑖 − 4.  

 

    𝑎1 = 7 ∙ 1 − 4 = 3 

    𝑎13 = 7 ∙ 13 − 4 = 87 

 

                                       ∑ 𝑎𝑖
𝑛
𝑖=1 =

𝑛

2
(𝑎1 + 𝑎𝑛) 

 

∑ (7𝑖 − 4)13
𝑖=1 =

13

2
(3 + 87)   

 

      =
13

2
(90) 

 

      = 13(45) 

       

      = 585 

 

Sometimes the questions can be worded differently, as in the 

next example. 

 

3.      Find 𝑆100 for the sequence {𝑎𝑖} where 𝑎𝑖 = 5𝑖 + 7  

 

 Even if we were not told that this was an arithmetic 

 sequence, we could tell by looking at its form since it is 

 linear. Then we know we can use the formula. 
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   We need to figure out what to plug into the formula for 

 𝑛, 𝑎1, and 𝑎𝑛.  Looking at the form, we should be able to 

 identify that 𝑛 = 100.  
 

 We can figure out 𝑎1 and 𝑎100 by plugging the values 

  𝑖 = 1 and 𝑖 = 100 into the general term 𝑎𝑖 = 5𝑖 + 7.  

 

    𝑎1 = 5 ∙ 1 + 7 = 12 

    𝑎100 = 5 ∙ 100 + 7 = 507 

 

                          ∑ 𝑎𝑖
𝑛
𝑖=1 =

𝑛

2
(𝑎1 + 𝑎𝑛) 

 

 ∑ (5𝑖 + 7)100
𝑖=1 =

100

2
(12 + 507)  

 

      = 50(519) 

       

      = 25,950 

 

4.   Evaluate the following series:     

  ∑(10𝑗 − 4)

32

𝑗=5

 

 

For this example, we can see that the general term is linear, so 

this is an arithmetic series, but the series is not starting at 1, but 

at 5 instead.  We need to be careful here because the formula 

only applies when we are adding the first 𝑛 terms, which means 

we have to be starting at 1 to use it.  Since we really do not wish 

to write out all of the terms from 𝑎5 to 𝑎32 and add them up, we 

should look for a way to write this series as a combination of 

sums that begin at 1 so that we can use the formula on those 



 

691 
 

pieces.  It is really not difficult if you think of adding ALL of 

the terms from 𝑎1 to 𝑎32 and then subtracting off the first four 

terms 𝑎1 to 𝑎4. That should leave us with the terms we want to 

add – 𝑎5 to 𝑎32: 

 

         ∑ (10𝑗 − 4) =32
𝑗=5   ∑ (10𝑗 − 4) −32

𝑗=1   ∑ (10𝑗 − 4)4
𝑗=1  

Now, we can use the formula on each piece since they both start at 

1 and then subtract:  

For the first piece:   ∑ (10𝑗 − 4)32
𝑗=1  

 

    𝑎1 = 10 ∙ 1 − 4 = 6 

    𝑎32 = 10 ∙ 32 − 4 = 316 

 

 

∑ (10𝑗 − 4)32
𝑗=1 =

32

2
(6 + 316)   

 

      = 16(322) 

       

      = 5,152 

 

For the second piece:   ∑ (10𝑗 − 4)4
𝑗=1  

 

    𝑎1 = 10 ∙ 1 − 4 = 6 

    𝑎4 = 10 ∙ 4 − 4 = 36 

 

 

∑ (10𝑗 − 4)4
𝑗=1 =

4

2
(6 + 36)   

 

      = 2(42) 
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      = 84 

 

Therefore,         ∑ (10𝑗 − 4) =32
𝑗=5   5152 − 84 = 5068 

 

Geometric Series 

 

There is also a formula for adding the first 𝑛 terms in a 

geometric series. This formula is as follows: 

 

𝑆𝑛 = ∑ 𝑎1𝑟𝑘−1 =
𝑎1(1 − 𝑟𝑛)

1 − 𝑟

𝑛

𝑘=1

 

 

We can prove this formula using a trick (by subtracting r times 

the sum to both sides, we can get all but two of the terms to 

cancel out on one side): 

 

𝑆𝑛 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯ + 𝑎𝑛−1 + 𝑎𝑛 

 

𝑆𝑛 = 𝑎1 + 𝑎1𝑟 + 𝑎1𝑟2 + 𝑎1𝑟3 + ⋯ + 𝑎1𝑟𝑛−2 + 𝑎1𝑟𝑛−1 

 

𝑟𝑆𝑛 = 𝑎1𝑟 + 𝑎1𝑟2 + 𝑎1𝑟3 + 𝑎1𝑟4 + ⋯ + 𝑎1𝑟𝑛−1 + 𝑎1𝑟𝑛 

 

No subtracting 𝑟𝑆𝑛 from 𝑆𝑛, we see that all of the terms drop 

out except for the first and the last term: 

 

𝑆𝑛 = 𝑎1 + 𝑎1𝑟 + 𝑎1𝑟2 + 𝑎1𝑟3 + ⋯ + 𝑎1𝑟𝑛−2 + 𝑎1𝑟𝑛−1 

 

−𝑟𝑆𝑛 = −𝑎1𝑟 − 𝑎1𝑟2 − 𝑎1𝑟3 − 𝑎1𝑟4 − ⋯ − 𝑎1𝑟𝑛−1 − 𝑎1𝑟𝑛 

 

𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎1 − 𝑎1𝑟𝑛
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Now, solving for 𝑆𝑛:
 

𝑆𝑛(1 − 𝑟) = 𝑎1 − 𝑎1𝑟𝑛

𝑆𝑛(1−𝑟)

1−𝑟
=

𝑎1−𝑎1𝑟𝑛

1−𝑟

 

𝑆𝑛 =
𝑎1−𝑎1𝑟𝑛

1−𝑟
=

𝑎1(1−𝑟𝑛)

1−𝑟
 

Now, let’s use this formula in some examples. 

 

Examples 

 

5.    Evaluate the following geometric series:    

  ∑ 3 (
1

2
)

𝑘−110

𝑘=1

 

 

Here, we can see that 𝑛 = 10.  
 

We can identify 𝑎1and 𝑟 in the general term 𝑎1𝑟𝑘−1 by   

inspection (𝑎1 = 3 𝑎𝑛𝑑 𝑟 =
1

2
 in the form for 𝑎𝑘 in the sum 

above) or we can plug the value 𝑘 = 1 into the general term 

𝑎𝑘 = 3 (
1

2
)

𝑘−1

.  

    𝑎1 = 3 (
1

2
)

1−1

= 3 (
1

2
)

0

= 3 ∙ 1 = 3 

     

Now the formula says: 

 

                          ∑ 𝑎𝑘
𝑛
𝑘=1 =

𝑎1(1−𝑟𝑛)

1−𝑟
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          ∑ 3 (
1

2
)

𝑘−1
10
𝑘=1 =

3(1−(
1

2
)

10
)

1−
1

2

  

 

      =
3(1−

1

1024
)

1−
1

2

 

 

      =
3(

1023

1024
)

1

2

 

 

      = 3 ∙
1023

1024
∙ 2 

 

      =
3069

512
 

 

6.    Evaluate the following geometric series:    

  ∑ 4(3)𝑗−1

9

𝑗=1

 

 

Here, we can see that 𝑛 = 9.  
 

We can identify 𝑎1and 𝑟 in the general term 𝑎1𝑟𝑗−1 by   

inspection (𝑎1 = 4 𝑎𝑛𝑑 𝑟 = 3 in the form for 𝑎𝑗  in the sum 

above) or we can plug the value 𝑗 = 1 into the general term 

𝑎𝑗 = 4(3)𝑗−1.  

    𝑎1 = 4(3)1−1 = 4(3)0 = 4 ∙ 1 = 4 

     

Now the formula says: 

 

                          ∑ 𝑎𝑗
𝑛
𝑗=1 =

𝑎1(1−𝑟𝑛)

1−𝑟
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          ∑ 4(3)𝑗−19
𝑗=1 =

4(1−39)

1−3
  

 

      =
4(1−19,683)

−2
 

 

      = −2(−19,682) 

 

      = 39,364 

 

 

Notice that we only thought about finite sums for arithmetic 

series. This is because if you add up infinitely many arithmetic 

terms, you will either get ∞ or − ∞. We will, however, consider 

infinite sums for geometric series. Sometimes they add up to a 

finite number and sometimes they do not. When a series does 

sum to a finite value, we say that it converges to that value. If it 

does not add up to a finite value, we say that the series diverges. 

Arithmetic terms are too “large” to allow convergence of the 

series when we add them. We can tell whether or not a 

geometric series will converge by looking at the common ratio 

𝑟. If the ratio is “small enough”, then the terms we are adding 

will get small enough fast enough for the series to converge.  

We will make this more precise after an intuitive and purely 

hypothetical example. 

 

Suppose you are going to walk across a room of length 1 (for 

ease of computation) in the following way: Each step that you 

take has to be half of the distance of your last step.  The first 

step you take will move you halfway across the room. Will you 

ever get to the other side of the room? 
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A picture might help: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First step 

takes you 

to 
1

2
 

Second step is half the size of the 

first step, or 
1

4
 and it takes you to 

3

4
 

(the sum of the first two steps is 
3

4
) 

Third step is half the size of the second step, or 
1

8
 and it takes you to 

7

8
 (the sum of the first 

three steps is 
7

8
) 

Fourth step is half the size of the third step, or 
1

16
 and it takes you to 

15

16
 (the sum of the first 

three steps is 
15

16
) 
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Can you see that you will never actually arrive at the other side?  

Another way to formulate the same problem is that you keep 

moving half the distance that is left. Can you tell that when you 

add up the distances traveled, you are approaching the distance 

of 1? We can think of the size of each step as a term in an 

infinite geometric sequence {
1

2
,

1

4
,

1

8
,

1

16
, … } and if we add up 

these steps, we will get the distance traveled, which approaches 

1 as we take more steps. (This is the idea of a limit, which you 

will explore deeply in a calculus course.) We can write the 

terms of our geometric sequence in the form 𝑎1𝑟𝑘−1  as 

 
1

2
(

1

2
)

𝑘−1

.  Now adding up the terms (taking infinitely many 

steps: 

∑
1

2
(

1

2
)

𝑘−1

= 1

∞

𝑘=1

 

 

So now we have an example of an infinite series that converges to 

a finite number.  We also have a formula for summing infinite 

geometric series when they converge: 

𝑆∞ =
𝑎1

1 − 𝑟
  when  |𝑟| < 1 

 

Always check 𝑟 before using this formula since if |𝑟| ≥ 1, 

the series will diverge. Proving this formula requires an 

understanding of limits, but the general idea is that if you 

take the formula 𝑆𝑛 =
𝑎1(1−𝑟𝑛)

1−𝑟
 and you allow 𝑛 to get very 

large, the value 𝑟𝑛 will get very small and eventually go 

away. 
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7.   Evaluate the following infinite geometric series:      

 

  ∑ 4 (
1

3
)

𝑘−1∞

𝑘=1

 

 

  Since this is an infinite geometric series, look at the value of  

  𝑟 first.  Here 𝑟 =
1

3
 and since |

1

3
| < 1, this series converges  

          and we can use the formula.  

 

    𝑆∞ =
𝑎1

1−𝑟
 

         =
4

1−
1

3

 

         =
4
2

3

 

         = 4 ∙
3

2
 

         = 6 

 

8.    Evaluate the following infinite geometric series: 

     

  ∑ 4 (−
5

2
)

𝑘−1∞

𝑘=1

 

 

 Since this is an infinite geometric series, look at the value of   

 𝑟 first.  Here 𝑟 = −
5

2
 and since |−

5

2
| =

5

2
> 1, this series diverges.  
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