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7.1  Introduction to Sequences 

 

A sequence is really just a list of items, or terms, in a particular order. 

Your grocery list could be considered a sequence, for example. In this 

lesson, we are looking at sequences of numbers, and in particular 

sequences of numbers with patterns between them.  

Sequences can also be thought of in relation to functions, and they often 

are in the field of statistics. In particular, a sequence can be thought of as 

the range of any function when the domain of that function is restricted 

to the natural (or counting) numbers.  Consider the function 𝑦 =
1

2
𝑥, for 

example. 

               

𝑥 

𝑦 

𝑥 
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If we restrict the domain of the function 𝑓(𝑥) =
1

2
𝑥 to the natural numbers {1,2,3,4,5, … }, 

then we get a subset of the line consisting of points.  The 𝑦 values of those points are the 

sequence that results: {
1

2
, 1,

3

2
, 2,

5

2
, 3,

7

2
, 4, … . }. Notice that each term of the sequence can be 

thought of as a member of the range of this function by simply plugging the natural numbers 

into the function: 𝑓(1) =
1

2
, 𝑓(2) = 1. 𝑓(3) =

3

2
, 𝑒𝑡𝑐. 

Any sequence can be thought of in this way and this motivates the notation that we use for the 

terms of a sequence {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, … } 

Note: In statistics, you will often work backwards and start with a set of points (a relationship 

between two variables) and try to find a line that best fits it.  This is called correlation / 

regression analysis. Your points will likely not lie in a perfectly straight line, but the closer they 

are, the more established the relationship is between those variables. Any arithmetic sequence 

is linear. 
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Terminology alert: First, notice that we are using the words “term” in a 

different way than we used it for polynomials. The terms of a sequence 

will be added together when we talk about series and then the 

connection will be clearer.  

Also, there is quite a bit of notation introduced in the next two lessons 

that can be a stumbling block for students, so we will intermittently stop 

to talk about it. For this lesson, you will need to know the following 

notation: 

A sequence can be referred to as {𝑎𝑛} or {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, … } where 

𝑎1 just means the first term of the sequence, 𝑎2 means the second term 

of the sequence,…. 𝑎𝑖 means the 𝑖𝑡ℎterm of the sequence, etc. The 

subscript is called the index of the sequence. It doesn’t matter what letter 

you use for the index.  For example, {𝑎𝑛} means the same thing as 

{𝑎𝑘}which means the same thing as {𝑎𝑖}, just like we can call variables 

any letter that we like. 

Examples 

Try to find the pattern for each of the following sequences. Predict 

the next 3 terms. 

1. {5, 7,9,11,13, … } 

If you look at each term carefully, you will see that 2 is added 

repeatedly to get from one term to the next. This is the pattern. The 

next three terms will be 15, 17, and 19. 

When the same number is repeatedly added to get to the next term, 

we call this an arithmetic sequence. We will study these more in 

the next section and you will learn how to find the formula for the 

𝑛𝑡ℎ term of any arithmetic sequence. The general term here can be 

described by 𝑎𝑛 = 3 + 2𝑛 if starting at 𝑛 = 1.  (Note: If you start 

at 𝑛 = 0, you could use the formula 𝑎𝑛 = 5 + 2𝑛, but it is more 



 

659 
 

common to start counting at 1 than at 0). Plug in a few values for n 

to see this: 

𝑎1 = 3 + 2(1) = 5 

𝑎2 = 3 + 2(2) = 7 

𝑎3 = 3 + 2(3) = 9 

     𝑎4 = 3 + 2(4) = 11 

And so on…. 

 

2. {2, 6, 18, 54, … } 

 

Considering each term and how to get from one term to the next, 

you will notice that 3 is multiplied repeatedly. This is the pattern. 

The next three terms are 162, 486, and 1458. 

 When the same number is repeatedly multiplied to get to the next 

term, we call this a geometric sequence. We will also study these 

more in the next section and you will learn how to find the formula 

for the 𝑛𝑡ℎ term of any geometric sequence as well. The general 

term here can be described by 𝑎𝑛 = 2 ∙ 3𝑛−1 if starting at 𝑛 = 1.  

(If you start at 𝑛 = 0, you could use the formula 𝑎𝑛 = 2 ∙ 3𝑛). Plug 

in a few values for n to see this: 

𝑎1 = 2 ∙ 31−1 = 2 ∙ 30 = 2 ∙ 1 = 2 

𝑎2 = 2 ∙ 32−1 = 2 ∙ 31 = 2 ∙ 3 = 6 

𝑎3 = 2 ∙ 33−1 = 2 ∙ 32 = 2 ∙ 9 = 18 

𝑎4 = 2 ∙ 34−1 = 2 ∙ 33 = 2 ∙ 27 = 54 

And so on…. 
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3. {1, 4, 9, 16, 25, … } 

 

The pattern here is neither adding nor multiplication. If you look 

closely, you will see that each term is a perfect square. We have 

{12, 22, 32, 42, 52, … }, or you could write this more generally as 

𝑎𝑛 = 𝑛2. The next three terms will be 36, 49, and 64. 

 

4. {1, 2, 6, 24, 120, … } 

 

This one might be difficult to find the pattern for unless you are 

familiar with factorials, but you may be able to see that each term 

is multiplied by the next higher number (e.g. x2, x3, x4, x5 etc.). 

So the next term would be the previous term multiplied by 6, and 

so on. The name for this pattern is factorial and is denoted with an 

exclamation point! 

𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) ∙∙∙∙∙ 2 ∙ 1 

 

For example, 

5! = 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 120 

 

Basically, a factorial tells you to multiply the number by the 

product of all previous whole numbers. 

 

So the next three terms are 6!, 7!, and 8! as follows: 

 

6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 6 ∙ 120 = 720 

 

7! = 7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 7 ∙ 720 = 5040 

 

8! = 8 ∙ 7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 8 ∙ 5040 = 40,320 
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We see from the last example that sequences can grow very quickly, just 

as functions can. A sequence can represent any type of function such as 

exponential (geometric), logarithmic, absolute value, linear (arithmetic), 

factorial, rational, etc. Learning to recognize the pattern going from one 

term to the next will be important when working with sequences. You 

will learn methods for finding the general term for specific patterns as 

you move through your math courses. In this course, we focus on the 

basic idea of sequences and patterns. We also explore the arithmetic and 

geometric patterns in the next section. 

 

5. {0, 1, 1, 2, 3, 5, 8, 13, 21, 34 … . } 

 

Look carefully at this one. You may have seen this sequence 

before. It is called the Fibonacci Sequence and we see it in nature 

describing things like the patterns in the growth cycle of leaves on 

plants and petals on flowers.  We see it in finance describing 

cycles in the markets.  

 

To get the next term in this sequence, you add the two previous 

terms. For example, the sixth term 5, is calculated by adding the 

fifth term, 3, and the fourth term, 2. In general, the 𝑛𝑡ℎ term is 

found by adding the 𝑛 − 1𝑡ℎ  term and the 𝑛 − 2𝑡ℎ term. In 

mathematical notation, this looks like 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 . The 

next three terms will be 55, 89, and 144. 

 

When calculating a term in the sequence depends on prior terms in 

the sequence, we call this a recursive sequence. The idea is 

analogous to an iteration in computer programming. 

 

Not all sequences of numbers have patterns, however (and even when 

they do, those patterns are not always addition or multiplication).  They 
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can be random, like the sequence of digits in the decimal expansion of 𝜋 

appears to be. 

𝜋 = 3.1415926535897932384626433832795 … … 

If we write the digits of this decimal expansion in a sequence, it looks 

like this: {1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5 … } 

There is no identifiable pattern (as of yet) in this sequence.  As a matter 

of fact, this is an open problem in mathematics and if you can find a 

discernible pattern, you will surely win the Field Prize in Mathematics!! 
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