6.5 Practice Set

1. What does it mean to be one-to-one?
2. What is the horizontal line test?
3. If a relation passes the horizontal line test but not the vertical line test, is it one-to-one? Explain.
4. Describe the symmetry of a function and its inverse.

Determine whether or not each of the following represents a one-to-one function. Why or why not?
5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Find the inverse of each of the following one-to-one functions and graph both functions on the same set of axes. State any domain restrictions that exist for the inverse function.
19. $f(x)=-2 x+4$
20. $y=x^{3}-5$
21. $y=\frac{x-18}{3}$
22. $g(x)=\sqrt{x-5}$
23. $y=(x-2)^{2}+3 ; \quad x \leq 2$

Show that each pair of functions are inverses of each other.
24.

$$
\left\{\begin{array}{c}
f(x)=(x-3)^{5} \\
g(x)=\sqrt[5]{x}+3
\end{array}\right.
$$

25.

$$
\left\{\begin{array}{l}
h(x)=\frac{3 x-2}{4 x+1} \\
k(x)=\frac{x-2}{4 x-3}
\end{array}\right.
$$

Distributed Practice Problems

For each of the following pairs of functions, perform the following operations and give any restrictions on the domain of the resulting function:

$$
(f+g)(x),(f-g)(x),(f \cdot g)(x), \text { and }\left(\frac{f}{g}\right)(x) .
$$

26.

$$
\left\{\begin{array}{l}
f(x)=4 x-2 \\
g(x)=5 x+9
\end{array}\right.
$$

27.

$$
\left\{\begin{array}{c}
f(x)=x^{2}-3 x+1 \\
g(x)=-5 x+2
\end{array}\right.
$$

For each of the following pairs of functions, find the compositions ($\boldsymbol{f} \circ$
$\boldsymbol{g})(\boldsymbol{x})$ and $(\boldsymbol{g} \circ \boldsymbol{f})(\boldsymbol{x})$ and give any restrictions on the domain of the resulting function.
28.

$$
\left\{\begin{array}{c}
f(x)=-2 x^{2}+7 x+4 \\
g(x)=3 x-1
\end{array}\right.
$$

29.

$$
\left\{\begin{array}{l}
f(x)=\sqrt{x-1} \\
g(x)=4 x^{2}+5
\end{array}\right.
$$

Graph the following function. Give the x-intercept(s), y-intercept, domain, range, and the equation(s) of any asymptote(s).
30. $y=\log _{4}(x+1)-2$

