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2.7  Complex Numbers 

 

We are very familiar with real numbers, those numbers that represent 

quantities that can be attached to physical meaning like size, amount, 

account balance, etc. Real numbers can be natural numbers (like the 

counting numbers 1,2,3,4,…), whole numbers (just add 0 to the natural 

numbers), integers (positive and negative whole numbers) , rational 

numbers (fractions containing only integers, like −
4

5
, and decimals that 

either terminate like . 48, or repeat, like  or 0.353535 … = 0. 35̅̅̅̅ ) and 

irrational numbers (decimals that do not terminate or repeat, like 𝜋). 

Even the irrational numbers can be thought of with physical meaning. 

For example, when you think about the circumference of a circle, you 

will recall the formula 𝐶 = 2𝜋𝑟, which means that the distance around a 

circle is 2 times 𝜋 times the radius of that circle. Recall that 𝜋 is just a 

number that can’t be written down numerically without approximating 

because its decimal expansion goes on forever and never repeats:  

𝜋 ≈ 3.1415926535897932384626433832795 … .. 

The best we can do is put “…” at the end, but that is not accurate since it 

does not repeat. A common approximation for 𝜋 is 3.14, but if we want 

to represent the real number, we need a symbol.  Another such irrational 

number that we will encounter is  

𝑒 ≈ 2.7182818284590452353602874713527 

Both of these irrational numbers occur all over the place in nature and 

finance!  They are definitely involved in representing physical or 

tangible phenomena. 

But what other kinds of numbers could there be? And do they represent 

any kind of tangible phenomena? The short answers are imaginary 

numbers and yes.  
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First, recall that we were unable to take the square root of a negative 

number due to the fact that any real number times itself will produce a 

positive number. So, for example, √−1 is not a real number because 

12 = 1 𝑎𝑛𝑑 (−1)2 = 1. There is no real number we can square and get  

−1.  BUT, we could define a number to be √−1 and that is exactly what 

mathematicians of the past did! We call this number 𝑖, the imaginary 

unit. Why would mathematicians do such a thing? Basically, this 

number was created in order to solve the equation  𝑥2 + 1 = 0: 

 

𝑥2 + 1 = 0: 

   𝑥2 = −1  

   𝑥 = ±√−1  

   𝑥 = ±𝑖 

  

At the time that this imaginary unit was “invented”, there really was no 

tangible application, but later with the rise of quantum mechanics, ‘𝑖’ 
found its useful place in our society.  In order to understand the quantum 

physics of current technology, this imaginary unit is imperative.  I 

wonder what our technology would look like today without it… 

 

We can now evaluate the square roots of negative numbers as imaginary 

numbers: 

 √−4 = √−1 ∙ 4 = √𝑖2 ∙ 22 = 2𝑖 
 

An easier way to think of it is to simply ‘pull an 𝑖 out’ when you have 

the square root of a negative number. Then deal with taking the square 

root of the number as usual. 

 

 

It is worth noting here that we can 

now factor the sum of squares if we 

write it as a difference: 

 𝑥2 + 1 = 𝑥2 − (−1) 

               = (𝑥 + 𝑖)(𝑥 − 𝑖) 

       since 𝑖 = √−1. 
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Examples 

Simplify each of the following expressions completely. 

 

1.   √−9 = 𝑖√9 = 𝑖√3 ∙ 3 = 3𝑖 
 

2.   √−5 = 𝑖√5 

 

We can’t break the 5 down so we can either write our answer as it 

is above 𝑖√5 or we could write it as √5𝑖 with the number before 

the 𝑖. Just make sure the 𝑖 is not inside the radical, but outside, 

whether you place it before or after the real number. 

 

3.   −√−8 = −𝑖√8 = −𝑖√2 ∙ 2 ∙ 2 = −2𝑖√2 𝑜𝑟 − 2√2𝑖 
 

The negative outside of the radical stays outside, as it is really −1 

multiplied by the radical. 

 

4.   √−288 = 𝑖√2 ∙ 144 = 12𝑖√2 𝑜𝑟 12√2𝑖 
 

We could have broken 144 all the way down, but we didn’t really 

need to since we know 144 = 12 ∙ 12 from our multiplication 

table. 

 

5.   √−3 ∙ √−6 = 𝑖√3 ∙ 𝑖√6 = 𝑖2√3 ∙ 3 ∙ 2 = −1 ∙ 3√2 = −3√2 

 

Notice that we dealt with each of these radicals separately before 

multiplying them together. We could not put them “under the same 

roof” in the beginning because that rule is only valid for positive 

radicands. Let’s see what would have happened had we incorrectly 

applied that rule here:  
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 √−3 ∙ √−6 = √(−3)(−6) = √3 ∙ 3 ∙ 2 = 3√2 

 

We would not have arrived at the correct answer. The rule 

 √𝑎 ∙ √𝑏 = √𝑎𝑏 only applies to positive radicands. 

 

6.   √−5 ∙ √−35 = 𝑖√5 ∙ 𝑖√35 = 𝑖2√5 ∙ 5 ∙ 7 = −1 ∙ 5√7 = −5√7 

 

Now that we are familiar with imaginary numbers, we will need to learn 

how to work with them. Let’s consider other integer powers of 𝑖. We 

already know that 𝑖2 = −1, but what about 𝑖3, 𝑖4, 𝑖5, etc.? We will 

discover a pattern that will make computing these powers very simple. 

  

𝑖1 = 𝒊 

 

𝑖2 = −𝟏 

 

𝑖3 = 𝑖2 ∙ 𝑖 = −1 ∙ 𝑖 = −𝒊 

 

𝑖4 = 𝑖2 ∙ 𝑖2 = (−1)(−1) = 𝟏 

 

Now watch this pattern repeat (due to the fact that 𝑖4 = 1) 

 

𝑖5 = 𝑖4 ∙ 𝑖 = 1 ∙ 𝑖 = 𝒊 

 

𝑖6 = 𝑖4 ∙ 𝑖2 = 1(−1) = −𝟏 

 

𝑖7 = 𝑖4 ∙ 𝑖3 = 1(−𝑖) = −𝒊 
 

𝑖8 = 𝑖4 ∙ 𝑖4 = 1 ∙ 1 = 𝟏 

 

 

𝑖9 = 𝑖4 ∙ 𝑖4 ∙ 𝑖 = 1 ∙ 1 ∙ 𝑖 = 𝒊 

 

𝑖10 = 𝑖4 ∙ 𝑖4 ∙ 𝑖2 = 1 ∙ 1 ∙ (−1) = −𝟏 

 

𝑖11 = 𝑖4 ∙ 𝑖4 ∙ 𝑖3 = 1 ∙ 1 ∙ (−𝑖) = −𝒊 

 

𝑖12 = 𝑖4 ∙ 𝑖4 ∙ 𝑖4 = 1 ∙ 1 ∙ 1 = 𝟏 
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Can you simplify 𝑖37 by utilizing the fact that 𝑖4 = 1? If you use the 

same approach that we used above (breaking it down into factors of 𝑖4 

and evaluate what remains (which must be 𝑖, 𝑖2, 𝑜𝑟 𝑖3), you can get the 

answer as follows: 

 

𝑖37 = 𝑖4 ∙ 𝑖4 ∙ 𝑖4 ∙ 𝑖4 ∙ 𝑖4 ∙ 𝑖4 ∙ 𝑖4 ∙ 𝑖4 ∙ 𝑖4 ∙ 𝑖 = 𝒊 

 

You will notice that we ended up with nine 𝑖4′𝑠 above by utilizing the 

first rule of exponents (𝑏𝑚 ∙ 𝑏𝑛 = 𝑏𝑚+𝑛) to get 𝑖36. Another way we 

could have written this is as follows:  

 

𝑖37 = 𝑖36 ∙ 𝑖 = (𝑖4)9 ∙ 𝑖 = 19 ∙ 𝑖 = 𝒊 
 

Here we just used the third rule of exponents ((𝑏𝑚)𝑛 = 𝑏𝑚𝑛) to break 

down 𝑖37into as many 𝑖4′𝑠 as we could. This leads us to the simpler 

approach of dividing the power by 4 and taking the remainder to be the 

new power. Notice that what really mattered above was how many were 

left over after we factored out the 𝑖4′𝑠. Below, this simpler approach is 

detailed for the same problem: 

 

To evaluate 𝑖37, we will divide 37 by 4 and take the remainder as our 

new exponent: 

          9 

4|37 

36 

         1 

 

 

Therefore, 

 𝑖37 = 𝑖1 = 𝑖 

 

This is a nice fast approach, so we will use it in the next set of examples. 

This tells you how many 𝑖4′𝑠 you have. 

This tells you how many 𝑖′𝑠 you have leftover. 

This is your new exponent! 



 

243 
 

 

7.   𝑖12 

 

Divide 4 into 12 and you will get remainder 0:    

 

             3 

4|12 

12 

         0 

 

So   𝑖12 = 𝑖0 = 1 

 

Note that the long way to do this still gives the same answer:  

  

𝑖12 = 𝑖4 ∙ 𝑖4 ∙ 𝑖4 = 1 ∙ 1 ∙ 1 = 1 

 

 

8.   𝑖27 

            6 

4|27 

24 

         3 

 

So   𝑖27 = 𝑖3 = −𝑖 
 

We know that our remainder must be 0, 1, 2, or 3 when dividing by 4, 

and for each of these, we know how to simplify:  𝑖0 = 1,  𝑖1 = 𝑖, 

  𝑖2 = −1 𝑎𝑛𝑑 𝑖3 = −𝑖 as we showed at the beginning of this discussion. 

 

 

Sometimes, we can use our exponent rules to simplify as well. 

 

Your new exponent is 0. 

Your new exponent is 3. 
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9.   (−2𝑖)5 = (−2)5𝑖5 = −32𝑖 
 

Here we distributed our exponent over multiplication first and then 

we evaluated 𝑖5 = 𝑖1 = 𝑖. 
 

10.    𝑖9 − (4𝑖)2 = 𝑖 − 16𝑖2 = 𝑖 − 16(−1) = 𝑖 + 16 (𝑜𝑟 16 + 𝑖) 

 

In the last example, notice that the answer has a real number added to an 

imaginary number. This is what we call a complex number. 

 

Complex Numbers 

 

A complex number is a number of the form 𝑎 + 𝑏𝑖, where both 𝑎 and 𝑏 

are real numbers. 

 

Complex numbers are the most general type of numbers that we use.  

Every number that you have ever dealt with is a complex number.  All 

real numbers are complex numbers and all imaginary numbers are 

complex numbers.  Any number that can be written in the form 𝑎 + 𝑏𝑖 is 

a complex number.  The following are examples of complex numbers: 

 

1.   5 + 2𝑖     ( Here 𝑎 = 5 and 𝑏 = 2 ) 
 

2.   
2

3
−

1

8
𝑖     ( Here 𝑎 =

2

3
 and 𝑏 =

1

8
 ) 

 

3.   √3 + 2.95𝑖    ( Here 𝑎 = √3 and 𝑏 = 2.95 ) 

 

4.   7𝑖  ( This can be written as 0 + 7𝑖, so 𝑎 = 0 and 𝑏 = 7 ) 

 

5.   8  ( This can be written as 8 + 0𝑖, so 𝑎 = 8 and 𝑏 = 0 ) 
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Complex numbers are useful in fields other than pure mathematics, 

such as electrical engineering and quantum mechanics. We will be 

working with them from now on and they can occur as solutions to 

equations from this point forward. In order to fully understand 

them, we must also be able to perform the same operations on 

them that we perform on real numbers (addition, subtraction, 

multiplication, and division). We will focus on these operations for 

the remainder of this section. 

 

If we want to add or subtract two complex numbers to obtain 

another complex number, the process is quite simple.  You can 

treat 𝑖 like a variable and combine “like” terms. 

 

Examples 

 

Perform the indicated operations and simplify. Write your 

answer in the form 𝒂 + 𝒃𝒊. 

 

 

1.   (3 + 4𝑖) + (7 + 9𝑖) = 3 + 4𝑖 + 7 + 9𝑖 = 10 + 13𝑖 

 

All we did was remove the parentheses and combine “like” 

terms. Notice that the answer is in the form 𝑎 + 𝑏𝑖. That is how 

we know when we are done. 

 

2. (3 + 4𝑖) − (7 + 9𝑖) = 3 + 4𝑖 − 7 − 9𝑖 = −4 − 5𝑖 
 

For this one, we had to distribute the negative in order to 

remove the parentheses, but that is really the only difference 

between addition and subtraction of complex numbers. 
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In the next few examples, we will multiply. Multiplication of complex 

numbers is just like multiplication of two binomials. You already know 

how to FOIL, but you will need to replace any powers of 𝑖 at the end in 

order to simplify your answer completely. 

 

3.  (3 + 4𝑖)(7 + 9𝑖) = 21 + 27𝑖 + 28𝑖 + 36𝑖2 

 

            = 21 + 27𝑖 + 28𝑖 − 36 

 

  = −15 + 55𝑖 
 

4.   (2 − 8𝑖)(3 + 5𝑖) = 6 + 10𝑖 − 24𝑖 − 40𝑖2 

 

             = 6 + 10𝑖 − 24𝑖 + 40 

 

 = 46 − 14𝑖 

 

5.  (7 − 3𝑖)2 = (7 − 3𝑖)(7 − 3𝑖) 

 

= 49 − 21𝑖 − 21𝑖 + 9𝑖2 

 

= 49 − 21𝑖 − 21𝑖 − 9 

 

= 40 − 42𝑖 
 

Division is the only operation where the process is different than 

the process we use with real numbers, but it is still a process we 

are already familiar with. When we rationalized denominators, our 

goal was to get rid of the radical in the denominator, and we often 

utilized the conjugate to do this. When we divide complex 

numbers, our goal will be to get rid of the 𝑖 in the denominator, 

and once again, we will use the conjugate to do this. The conjugate 

Notice that we replaced 

36𝑖2with −36 because 

𝑖2 = −1. 



 

247 
 

of a complex number 𝑎 + 𝑏𝑖 is the complex number 𝑎 − 𝑏𝑖. 
(Basically, you change the sign in the middle just like you did with 

the radicals). The difference here is that you have to make sure 

your answer is in the form 𝑎 + 𝑏𝑖, so you will need to distribute 

the denominator to both the real and imaginary parts of the 

numerator at the end of the problem. 

 

6.   
3+4𝑖

7+9𝑖
=

3+4𝑖

7+9𝑖
∙

7−9𝑖

7−9𝑖
=

(3+4𝑖)(7−9𝑖)

(7+9𝑖)(7−9𝑖)
=

21−27𝑖+28𝑖−36𝑖2

130
 

 

 

 

 

=
57 + 𝑖

130
 

 

=
57

130
+

1

130
𝑖 

 

 

7.   
5+3𝑖

2−𝑖
=

5+3𝑖

2−𝑖
∙

2+𝑖

2+𝑖
=

(5+3𝑖)(2+𝑖)

(2−𝑖)(2+𝑖)
=

10+5𝑖+6𝑖+3𝑖2

5
 

 

 

=
7 + 11𝑖

5
 

 

=
7

5
+

11

5
𝑖 

 

 

The denominator can be multiplied fairly quickly 

since you know the middle terms will drop out: 

(7 + 9𝑖)(7 − 9𝑖) = 49 − 81𝑖2 = 49 + 81 = 130 

The final answer needs to 

be in the form 𝑎 + 𝑏𝑖, so 

we distributed the 

denominator to both 

pieces and we pulled 𝑖 

out of the numerator. 

𝑁𝑜𝑡𝑒: (2 − 𝑖)(2 + 𝑖) = 4 − 𝑖2 = 4 + 1 = 5 
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8.    
7

𝑖
=

7

𝑖
∙

−𝑖

−𝑖
=

−7𝑖

−𝑖2 =
−7𝑖

1
= −7𝑖 

 

 

 

 

 
In the next example, we will go back to simplifying radicals, but 

now we are allowing a negative inside of the square root. This 

will help later for simplifying solutions to equations. 

 

9.    
30+√−125

15
=

30+𝑖√125

15
=

30+𝑖√5∙5∙5

15
=

30+5𝑖√5

15
 

 

=
30

15
+

5√5

15
𝑖 = 2 +

√5

3
𝑖 

 

Take care of the radical first, as usual, and then reduce your 

fractions.  

 

 

Notice that the conjugate of 𝑖 (= 0 + 𝑖) is −𝑖 (= 0 − 𝑖). We could have just 

multiplied by 𝑖, but using the conjugate gets rid of the negative in the bottom as 

well. Also notice that when either 𝑎 = 0 or 𝑏 = 0, you can omit writing them. (You 

don’t have to write 0 − 7𝑖). 
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