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2.3  Multiplying and Dividing Radical Expressions 

 

Within the next two sections, we will explore the differences between 

the processes of addition/subtraction and multiplication/division 

involving radicals. These processes are sometimes confused, so it is best 

to go back to the basic concepts of addition and multiplication whenever 

confusion arises.  Consider the following two computations with the 

same numbers but with different operations between them: 

 

3√2 + 3√2   3√2 · 3√2 

 

Can you predict the outcomes for each of these operations? You actually 

already have the tools to do both of these problems, but these tools have 

not yet been put in the context of radicals.  

Consider first the addition problem. What if the problem was given with 

a variable representing √2? For example, if you had instead 3𝑥 + 3𝑥, 

where 𝑥 = √2.   You already know how to add this because you know 

adding is just counting.  If you have 3 𝑥′𝑠 to begin with and you add 

another 3 𝑥′𝑠, you end up with 6 𝑥′𝑠. So we know that 3𝑥 + 3𝑥 = 6𝑥. In 

the same way, you can imagine counting √2′𝑠.   So 3√2 + 3√2  should 

equal 6√2. We will discuss this more in the next section. 

Let’s turn our attention to the second problem now, as multiplication of 

radicals is the focus of this section. You already have the tools to deal 

with this problem as well.  There is more than one way to think about 

this problem.  For example, we could write it as a square and then use 

rule 4 to distribute our exponent: (3√2)
2

= 32(√2)
2

= 9 · 2 = 18.  

(Notice that when you square √2, you just get 2.  You can think of it 

simply as the square “undoing” the square root to leave you with the 



 

188 
 

radicand you began with, or you can bring the square inside and take the 

square root of 4 which still gives you 2.)  

There is a more general way to think about this problem (since you 

might be multiplying two different numbers and hence you would not 

have a square).  First, we need to make sure we understand that 

multiplication is the operation taking place between the number and the 

radical even though the symbol is omitted: 3√2 really means 3 ·

√2. Once we realize this, we see that we really just have a multiplication 

between four numbers here. We know that multiplication is 

commutative and associative, so we can move things around and 

multiply any two of them together at a time, so using these properties, 

we get 3 · √2 · 3 · √2 = 3 · 3 · √2 · √2 and then grouping together the 

whole numbers and the radicals, we obtain 9 · 2 = 18.  Notice that we 

still got the same answer. We just looked at the problem in a more 

general way. That is part of the beauty of mathematics – as long as you 

are using correct logic, you will get to the same answer. 

There is a nice way to think about this process that is faster (as long as 

you understand why you can do this) and that is to simply multiply the 

whole numbers (the outsides) and the radicands (the insides). So very 

quickly you would get from 3√2 · 3√2 to 9 · 2 and then finish 

multiplying…. 

Now, we are ready for some formal rules for multiplication and division 

of radicals. These are not really new rules, however.  You will see that 

they are just two of the exponent rules you already know rewritten in 

radical form! 
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For non-negative radicands 𝒂 and 𝒃, 

1.   √𝒂
𝒏

· √𝒃
𝒏

= √𝒂𝒃
𝒏

 

 

2.   
√𝒂𝒏

√𝒃
𝒏 = √

𝒂

𝒃

𝒏
 

 

The first rule could be written as 𝑎
1

𝑛 · 𝑏
1

𝑛 = (𝑎𝑏)
1

𝑛, which is really just 

rule 4 of our exponent rules that says we can distribute exponents over 

multiplication.  The second rule could be written as   
𝑎

1
𝑛

𝑏
1
𝑛

= (
𝑎

𝑏
)

1

𝑛
, 

which is really just rule 5 of our exponent rules that says we can 

distribute exponents over division. Here, we are using both of these rules 

in a backwards kind of way to combine our radicands “under one roof” 

when we have the same root. Some examples will make this very clear. 

 

Examples 

Perform the indicated operation and simplify each of the following 

rational exponent expressions. Assume that all variables represent 

non-negative real numbers. 

 

1.   √7 · √5 = √7 · 5 = √35 

 

We can put our numbers “under the same roof” here since we are 

multiplying the same type of root.  Since we can’t pull anything 

out of the radical, we just go ahead and multiply them together to 

simplify. 
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2.   √3 · √11 = √3 · 11 = √33 

 For the first two examples, it was convenient to put them under the 

 same radical, but sometimes it is easier to deal with the radicals 

 separately and then multiply your results. This happens when you 

 have perfect powers as in the next example: 

3.   √25 · √16 = 5 · 4 = 20 

 

Since 25 and 16 are both perfect squares, it is easier to just 

evaluate the square roots and then multiply your results than it is to 

put them under the same radical and break them down, although 

you could do it this way and you would get the same answer:  

 

√25 · √16 = √25 · 16 = √5 · 5 · 4 · 4 = 5 · 4 = 20 

 

4.   √5 · √5 = √5 · 5 = 5 

 

This problem can be thought of in many ways.  For example, 

 √5 · √5  could also be written as (√5)
2
and then the square 

“undoes” the square root, or it could be written as (5
1

2)
2

and then 

multiply the exponents to get 51 = 5. You could also bring the 

square inside the radical (√5)
2

= √52 = √25 = 5.  You get the 

idea, right?  As long as you know how radicals operate, you will 

get to the correct answer. 
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5.   √3 · √18 = √3 · 18 = √3 · 3 · 3 · 2 = 3√6 

 

Once again, you could have done this problem a different way. If 

you choose to deal with the radicals separately and then multiply 

your results, you will get the same answer: 

 

√3 · √18 = √3 · √2 · 3 · 3 = √3 · 3√2 = 3√3 · 2 = 3√6 

 

 

6.   √7𝑥 · √21𝑦 = √7 · 7 · 3 · 𝑥 · 𝑦 = 7√3𝑥𝑦 

 

 

7.   √18𝑥2𝑦3 · √6𝑥𝑦4 = √2 · 2 · 2 · 3 · 3𝑥3𝑦7 = 2 · 3𝑥𝑦3√2𝑥𝑦 

 

= 6𝑥𝑦3√2𝑥𝑦 

 

Notice that when we put them under the same roof, we 

automatically break down our numbers and put them in order to 

make it easier to pull out pairs. Since 18 = 2 · 3 · 3 and 6 = 2 · 3 

it follows that 18 · 6 = 2 · 3 · 3 · 2 · 3.  Now, just put these primes 

in order and you will get what is under the radical in the problem 

above. I recommend doing the factor tree right below the numbers 

so you can easily put the primes in order in your next step. We 

used the first rule of exponents 𝑏𝑚 · 𝑏𝑛 = 𝑏𝑚+𝑛 to combine the 

variables under the radical. We used the shortcut learned in the last 

section to pull out variables (divide the exponent by the index). 
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8.   √14𝑥5 · √21𝑥6 = √2 · 3 · 7 · 7𝑥11 = 7𝑥5√6𝑥 

 

9.  3√5 · 7√10 = 3 · 7 · √5 · √10 = 21√5 · 5 · 2 = 21 · 5√2 

 

= 105√2 

 

This problem could have also been given with parentheses instead 

of the multiplication symbol like this: (3√5)(7√10)  

Oftentimes, the problem is given this way when there are numbers 

(or variables) in front of the radicals. It means the same thing, just 

as 5 · 3 and (5)(3) mean the same thing. 

 

10. (2𝑥√𝑥3𝑦)(𝑥𝑦√𝑥5) = 2𝑥2𝑦√𝑥8𝑦 = 2𝑥2𝑦𝑥4√𝑦 = 2𝑥6𝑦√𝑦 

 

Here again, we multiplied the “outsides” and then put the “insides” 

under the same roof so that we could simplify.  We ended up 

pulling out 𝑥4 and then combining it with the 𝑥2 that was already 

in front of the radical. 

 

11. (5𝑚𝑛2√2𝑚𝑛)(6𝑛5√6𝑛) = 30𝑚𝑛7√2 · 2 · 3𝑚𝑛2 

 

          = 30 · 2𝑚𝑛7𝑛√3𝑚 = 60𝑚𝑛8√3𝑚 

 

12. − √7
3

· √49
3

= − √7 · 7 · 7
3

= −7 

 

Don’t forget the index represents your exchange rate (how many of 

something on the inside it takes to equal one of those on the 

outside). Here the index is 3, so it takes 3 of these 7’s to get one of 

them outside of the radical. 
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13. √2𝑡
5

· 4√16𝑡85
= 4 √2 · 2 · 2 · 2 · 2 𝑡95

= 4 · 2𝑡 √𝑡45
= 8𝑡 √𝑡45

 

 

Sometimes, we are tempted to pull stuff out of the radical when we are 

not supposed to.  Just because we see a square on something doesn’t 

mean it can come out of the square root. Consider the next three 

examples. 

 

14. √𝑥 · √𝑥 + 1 = √𝑥(𝑥 + 1) 𝑜𝑟 √𝑥2 + 𝑥 

 

Even though we have 𝑥2 under the radical, it is attached by 

addition rather than multiplication, so it cannot come out. In other 

words, radicals do not distribute over addition (because exponents 

do not distribute over addition and a radical is just a rational 

exponent). Consider an example with numbers: √32 + 42  

Is this the same thing as √32 + √42?  Let’s compare them.  We 

know that using the order of operations, we should get the 

following: √32 + 42 = √9 + 16 = √25 = 5, but √32 + √42 =

3 + 4 = 7.   So we can see that they are not the same thing. 

Therefore, √𝑥2 + 𝑥 ≠ √𝑥2 + √𝑥 𝑜𝑟 𝑥 + √𝑥, and although it is 

tempting to do such things, we can see that they produce incorrect 

results. We need to pay attention at all times in order not to go on 

autopilot and make these kinds of mistakes.   

15. √𝑥 + 2 · √𝑥 − 2 = √(𝑥 + 2)(𝑥 − 2) 𝑜𝑟 √𝑥2 − 4 

 

Once again, we cannot distribute the radical over 

addition/subtraction, only over multiplication/division. 
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16. √𝑦2(𝑥 + 𝑦) · √(𝑥 + 𝑦)3 = √𝑦2(𝑥 + 𝑦)4 = 𝑦(𝑥 + 𝑦)2 

 In this example, we had multiplication inside of the radical, so we 

 were able to take the square root of each factor. 

For the next set of examples, we will work with division.  These 

problems are very similar, but you will need to decide when it is 

convenient to have the radicands under the same radical or separate 

radicals. We will explore both ways. We are still assuming that all 

variables represent positive numbers. 

17.    √
𝑧2

16𝑥2 =
√𝑧2

√16𝑥2
=

𝑧

4𝑥
 

In this example, since we could not simplify the radicand by 

cancelling anything, it was useful to distribute the radical to the 

numerator and denominator and deal with them separately. 

18.     
√75𝑦5

√3𝑦
= √

75𝑦5

3𝑦
= √25𝑦4 = 5𝑦2 

In this example, we were given the problem with two separate 

radicals, but it was convenient to put them “under the same roof” 

to simplify. Once we simplified, then we dealt with the root.  We 

could have done it a different way, but it would have been more 

work to deal with them separately:  

 
√75𝑦5

√3𝑦
=

√3·5·5𝑦5

√3𝑦
=

5𝑦2√3𝑦

√3𝑦
= 5𝑦2 

 

We ended up simplifying at the end instead of the beginning, but 

we got the same answer! 
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19.     
√5𝑎4𝑏7𝑐2

√𝑏3
= √

5𝑎4𝑏7𝑐2

𝑏3 = √5𝑎4𝑏4𝑐2 = 𝑎2𝑏2𝑐√5 

 
It is also useful in this example to put them under the same radical 

since we see that we can combine our 𝑏′𝑠 together. 

 

 

20.     
√3𝑥2𝑦3

4√5𝑥𝑦3
=

1

4
· √

3𝑥2𝑦3

5𝑥𝑦3 =
1

4
· √

3𝑥

5
=

√3𝑥

4√5
 

 
First, notice that the 4 in the denominator is outside of the radical, 

so when we combine our radicals, the 4 needs to stay outside. 

Also, notice that the 4 is in the denominator, so when we separate 

it from the radical we need to keep it in the denominator. That is 

why we have 
1

4
 outside being multiplied by our radical. After we 

put the radicands under the same radical and simplified them, we 

separated them again at the end and brought the 4 back into the 

denominator. Later, you will learn how to get rid of the radical in 

the denominator by rationalizing it. 
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