Expansion of the Universe Exercise

Stude	ent N	ame:
Scaa		arrici

Step 1.

1. Using the data in Figures 1-4, measure the peak (in nanometers) of the H□ from the spectra for each of the four galaxies presented.

Step 2.

- A. Record the wavelength of the highest peak of each galaxy in Table 1.
- B. Use Equation 1 to calculate the redshift value (z) for each one and record these values in Table 1 as well.
- C. For the wavelength of H□ from a non-moving source, use 656.28 nm.

Step 3.

Calculate the Velocity (V) in km/s for each galaxy and record your answers, using Equation 2.

Step 4.

- D. On a separate piece of graph paper, plot the distance in Mpc (on the x-axis) versus the Velocity (on the y-axis).
- E. Draw your best fit straight line through your data points and use the of 0,0 as a fixed point.

Step 5.

Calculate your value for the Hubble constant H_0 using the slope intercept formula as given in Equation 3.

$$Z = (\lambda_{obs} - \lambda_0) / \lambda_0$$

Equation 1.

$$Z = V/C$$
 (c = speed of light)

Equation 2.

m = y / x(Here y = the Velocity, x = the distance and m = H_0.)

Equation 3.

- **Question 1:** Did your plot yield a fairly straight line relationship? Does the relationship shown by your plot match Hubble's Law? Explain.
- **Question 2:** Which galaxy would you predict would be moving at the lowest velocity relative to us? Which is moving at the greatest?

All Spctra derived from the data of: Kennicutt R.C.Jr. - Astrophys. J., Suppl. Ser., 79, 255-284 (1992) - 01.01.86 01.01.86 March 1992

Galaxy	Peak (nm)	Z	Distance (Mpc)	V (km/s)
NGC3034			3.53	
NGC4750			22.70	
NGC3627			11.35	
NGC3516			36.81	

Table 1.