1

THE NATURE OF SCIENCE AND PHYSICS

Dr. Hiremath, CN, Ph.D

Example

- Problem (E1.2):

A grocery store sells 5 lb bags of apples. You purchase four bags over the course of a month and weight the apples each time. (You obtain the following measurements: Week 1 weight, 4.8 lb ; Week 2 weight 5.3 lb ; Week 3 weight, 4.9 lb ; Week 4 weight, 5.4 lb .) You determine that the weight of the 5 lb has an uncertainty of $\pm 0.4 \mathrm{lb}$. What is the percent uncertainty of the bag's weight?

- Solution:

We have

$$
A=\underline{5} \mathrm{lb} \quad \delta A=0.4 \mathrm{lb} \quad \boldsymbol{u}_{p}=?
$$

The percent uncertainty of the weight

$$
\begin{aligned}
\boldsymbol{u}_{\boldsymbol{p}} & =(\delta A / A) \times 100 \% \\
& =(0.4 \mathrm{lbs} / 5 \mathrm{lbs}) \times 100 \%=\underline{8} \% \\
& =\mathbf{8} \%
\end{aligned}
$$

The weight of the apple is: $\quad 5 \mathrm{lb} \pm \mathbf{0 . 4} \mathrm{lb}$ or $5 \mathrm{lb} \pm \mathbf{8 \%}$

Problem 1

- Problem (P1.2):

A car is traveling at a speed of $33 \mathrm{~m} / \mathrm{s}$. What is its speed in kilometers per hour?

- Solution:

$$
v=\underline{33} \mathrm{~m} / \mathrm{s} \quad v(\mathrm{~km} / \mathrm{h})=?
$$

The speed of the car in kilometers per hour is

$$
\begin{aligned}
\boldsymbol{v} & =33 \mathrm{~m} / \mathrm{s}(1 \mathrm{~km} / 1000 \mathrm{~m})(3600 \mathrm{~s} / 1 \mathrm{~h}) \\
& =118.8 \mathrm{~km} / \mathrm{h} \\
& =\mathbf{1 2 0} \mathbf{~ k m} / \mathrm{h}
\end{aligned}
$$

Problem 2

- Problem (P1.8):

The speed of sound is measured to be $342 \mathrm{~m} / \mathrm{s}$ on a certain day. What is this in km / h ?

- Solution:

$$
v=\underline{342} \mathrm{~m} / \mathrm{s} \quad 1 \mathrm{~km}=1000 \mathrm{~m} \quad 1 \mathrm{~h}=3600 \mathrm{~s} \quad v(\mathrm{~km} / \mathrm{h})=?
$$

The speed of sound in kilometers per hour is
$\boldsymbol{v}=342 \mathrm{~m} / \mathrm{s}(1 \mathrm{~km} / 1000 \mathrm{~m})(3600 \mathrm{~s} / 1 \mathrm{~h})$
$=1231.2 \mathrm{~km} / \mathrm{h}$
$=1230 \mathrm{~km} / \mathrm{h}$

Problem 3

- Problem (P1.12):

A good-quality measuring tape can be off by 0.50 cm over a distance of 20 m . What is its percent uncertainty?

- Solution:

$$
\bar{\delta}=0.50 \mathrm{~cm} \quad L=\underline{2} 0 \mathrm{~m} \quad \boldsymbol{u}_{p}=\text { ? }
$$

Converting the uncertainty in distance into meters

$$
\begin{aligned}
\delta L & =0.50 \mathrm{~cm}(1 \mathrm{~m} / 100 \mathrm{~cm}) \\
& =0.0050 \mathrm{~m} \\
& =0.0050 \mathrm{~m}
\end{aligned}
$$

The percent uncertainty is given by

$$
\begin{aligned}
\boldsymbol{u}_{\boldsymbol{p}} & =(\delta L / L) \times 100 \% \\
& =(0.0050 \mathrm{~m} / \underline{2} 0 \mathrm{~m}) \times 100 \% \\
& =0.0 \underline{2} 5 \\
& =0.03 \%
\end{aligned}
$$

Problem 4

- Problem (P1.20):

A person's blood pressure is measured to be $120 \pm 2 \mathrm{~mm} \mathrm{Hg}$. Assuming the same percent uncertainty, what is the uncertainty in a blood pressure measurement of 80 mm Hg ?

- Solution:

$$
\bar{\delta} S=\underline{2} \mathrm{~mm} \quad S=120 \mathrm{~mm} \quad D=80 \mathrm{~mm} \quad \boldsymbol{u}_{p}=? \quad \boldsymbol{\delta} \boldsymbol{D}=?
$$

The percent uncertainty for systolic blood pressure

$$
\begin{aligned}
\boldsymbol{u}_{\boldsymbol{p}} & =(\delta S / S) \times 100 \% \\
& =(2 \mathrm{~mm} / 120 \mathrm{~mm}) \times 100 \%=1.667 \% \\
& =\mathbf{2} \%
\end{aligned}
$$

Using this percent uncertainty, the uncertainty in diastolic blood pressure is

$$
\begin{aligned}
\boldsymbol{\delta D} & =\left(\boldsymbol{u}_{p} / 100 \%\right) D \\
& =(1.667 \% / 100 \%) 80 \mathrm{~mm}=1.3336 \mathrm{~mm} \text { of } \mathrm{Hg} \\
& =\mathbf{1} \mathbf{~ m m} \text { of } \mathbf{H g}
\end{aligned}
$$

Problem 5

- Problem (P1.22):

What is the area of a circle 3.102 cm in diameter?

- Solution:

$$
r=0.5 \times 0.0 \underline{3102} \mathrm{~m} \quad \boldsymbol{A}=?
$$

The area of the circle is

$$
\begin{aligned}
\boldsymbol{A} & =\Pi r^{2} \\
& =(3.14159)\left[0.5 \times 0.03102 \mathrm{~m}^{2}=\underline{7.55741 \times 10^{-4} \mathrm{~m}^{2}}\right. \\
& =\mathbf{7 . 5 5 7} \times \mathbf{1 0}^{-4} \mathbf{m}^{2}
\end{aligned}
$$

Problem 6

- Problem (P1.28):

A car engine moves a piston with a circular cross section of $7.500 \pm 0.002 \mathrm{~cm}$ diameter a distance of $3.250 \pm 0.001 \mathrm{~cm}$ to compress the gas in the cylinder. By using the amount the gas is decreased in volume in cubic centimeters, find the uncertainty in this volume.

- Solution:

$$
\begin{array}{lll}
\delta d=0.002 \mathrm{~cm} & d=7.500 \mathrm{~cm} & \boldsymbol{\delta} \boldsymbol{V}=? \\
\delta h=0.001 \mathrm{~cm} & h=3.250 \mathrm{~cm} &
\end{array}
$$

The volume in cubic centimeters is

$$
\begin{aligned}
V & =\Pi r^{2} h \\
& =(3.14159)[7.500 \mathrm{~cm} / 2]^{2}(3.250 \mathrm{~cm})=143.580 \mathrm{~cm}^{3}
\end{aligned}
$$

The percent uncertainty for diameter, height and volume are

$$
\begin{aligned}
& \boldsymbol{u}_{\boldsymbol{p d}}=(\delta d / d) \times 100 \%=(0.002 / 7.500) \times 100 \%=0.053 \% \\
& \boldsymbol{u}_{p h}=(\delta h / h) \times 100 \%=(0.001 / 3.250) \times 100 \%=0.031 \% \\
& \boldsymbol{u}_{\boldsymbol{p} \boldsymbol{v}}=2(0.053 \%)+(0.031 \%)=0.137 \% \quad \text { (Three decimals!) }
\end{aligned}
$$

The uncertainty in the volume of the gas in cubic centimeters is

$$
\delta V=\left(u_{p v} / \overline{100 \%}\right) V
$$

Dr. Hiremath $=(0.137 \% / 100 \%)\left(143.580 \mathrm{~cm}^{3}\right)=0.196705 \mathrm{~cm}^{3}$

References

1. College Physics OpenStax College Rice University, 2017.
