1

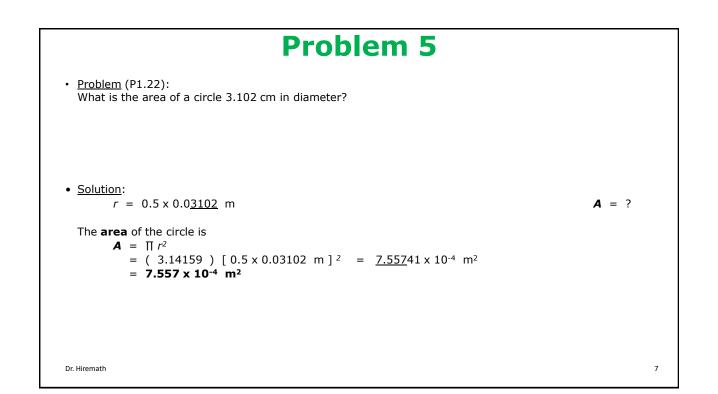
1

THE NATURE OF SCIENCE AND PHYSICS

Dr. Hiremath, CN, Ph.D

Dr. Hiremath

 <u>Problem</u> (E1.2): A grocery store sells 5 lb bags of apples. You purchase four bags over the course of a month and weight the apples each time. (You obtain the following measurements: Week 1 weight, 4.8 lb; Week 2 weight 5.3 lb; Week 3 weight, 4.9 lb; Week 4 weight, 5.4 lb.) You determine that the weight of the 5 lb has an uncertainty of ± 0.4 lb. What is the percent uncertainty of the bag's weight? 		
• <u>Solution</u> : We have $A = \underline{5} \text{ lb}$ $\delta A = 0.4 \text{ lb}$	u_p = ?	
The percent uncertainty of the weight $u_p = (\delta A / A) \times 100 \%$ $= (0.4 \text{ lbs} / 5 \text{ lbs}) \times 100 \% = \underline{8} \%$ = 8 %		
The weight of the apple is: $5 \text{ lb} \pm 0.4 \text{ lb}$ or	5 lb ± 8%	
Dr. Hiremath	2	


Problem 1		
 <u>Problem</u> (P1.2): A car is traveling at a speed of 33 m/s. What is its s 	peed in kilometers per hour?	
 <u>Solution</u>: v = <u>33</u> m/s The speed of the car in kilometers per hour is v = 33 m/s (1 km / 1000 m) (3600 s / 1 = <u>118.8</u> km/h = 120 km/h 	v (km/h) = ?	
Dr. Hiremath		3

Problem 2	
 <u>Problem</u> (P1.8): The speed of sound is measured to be 342 m/s on a certain day. What is this in km/h? 	
 Solution: v = 342 m/s 1 km = 1000 m 1 h = 3600 s v (km/h) = ? The speed of sound in kilometers per hour is v = 342 m/s (1 km / 1000 m) (3600 s / 1 h) = 1231.2 km/h = 1230 km/h 	
Dr. Hiremath	4

2

Problem	3
 <u>Problem</u> (P1.12): A good-quality measuring tape can be off by 0.50 cm over a uncertainty? 	distance of 20 m. What is its percent
• <u>Solution</u> : $\delta L = 0.50 \text{ cm}$ $L = \underline{2}0 \text{ m}$	$u_p = ?$
Converting the uncertainty in distance into meters $\delta L = 0.50 \text{ cm} (1 \text{ m} / 100 \text{ cm})$ = 0.0050 m = 0.0050 m	
The percent uncertainty is given by $u_p = (\delta L / L) \times 100 \%$ $= (0.0050 \text{ m} / 20 \text{ m}) \times 100 \%$ = 0.025 % = 0.03 %	
Dr. Hiremath	5

Problem 4 • <u>Problem</u> (P1.20): A person's blood pressure is measured to be 120 ± 2 mm Hg. Assuming the same percent uncertainty, what is the uncertainty in a blood pressure measurement of 80 mm Hg ? • Solution: $u_p = ?$ $\delta D = ?$ $\delta S = 2 \text{ mm}$ S = 120 mm D = 80 mmThe **percent uncertainty** for systolic blood pressure $\boldsymbol{u_p} = (\delta S / S) \times 100 \%$ = (2 mm / 120 mm) x 100 % = <u>1</u>.667 % = 2 % Using this percent uncertainty, the **uncertainty** in diastolic blood pressure is $\delta D = (u_p / 100\%) D$ = (<u>1</u>.667 % / 100 %) 80 mm = <u>1</u>.3336 mm of Hg = 1 mm of Hg Dr. Hiremath 6

Problem 6	
 <u>Problem</u> (P1.28): A car engine moves a piston with a circular cross section of 7.500 ± 0.002 cm diameter a distance of 3.250 ± 0.001 cm to compress the gas in the cylinder. By using the amount the gas is decreased in volume in cubic centimeters, find the uncertainty in this volume. 	
• <u>Solution</u> : $\delta d = 0.002 \text{ cm}$ $d = 7.500 \text{ cm}$ $\delta V = ?$ $\delta h = 0.001 \text{ cm}$ $h = 3.250 \text{ cm}$	
The volume in cubic centimeters is $V = \prod r^2 h$ $= (3.14159) [7.500 \text{ cm}/2]^2 (3.250 \text{ cm}) = \underline{143.580} \text{ cm}^3$ The percent uncertainty for <u>diameter</u> , <u>height</u> and <u>volume</u> are $u_{pd} = (\delta d / d) \times 100 \% = (0.002 / 7.500) \times 100 \% = 0.053 \%$ $u_{ph} = (\delta h / h) \times 100 \% = (0.001 / 3.250) \times 100 \% = 0.031 \%$ $u_{pV} = 2 (0.053 \%) + (0.031 \%) = 0.\underline{137} \%$ (Three decimals!) The uncertainty in the <u>volume</u> of the gas in cubic centimeters is $\delta V = (u_{pV} / 100 \%) V$	
Dr. Hiremath = $(0.137 \% / 100 \%) (143.580 cm^3) = 0.196705 cm^3$ = 0.197 cm ³	8

9

References

1. College Physics OpenStax College Rice University, 2017.

Dr. Hiremath