

Name	School Student \#	Date	Professor Assessment

Total: 10 points

Instructions

Student

1) Fill in the chapter number, name, school student number, and date at the top of this page.
2) Follow the rubric below and complete the assigned homework starting with the problem number.
3) Have the homework checked by a classmate; else you will receive a deduction up to 2 points.

Classmate

1) Follow the rubric below to assess the homework.
2) Write your name and your assessment at the bottom right of this page.
3) If the rubric is not followed, you will also receive a deduction up to 2 points.

Rubric

| Category | Description | Points |
| :---: | :--- | :---: | :---: |
| BIIG Checkpoints | 1. Assigning of known information to the corresponding variables, and performing unit
 conversions (B I I) | 1 |
| | 2. Assigning of the unknown information to the variable(s) (I I) | 1 |
| | 3. Providing the description of the formula and writing of the formula(e), and including diagram(s)
 if needed (G) | 1 |
| | 4. Showing the math clearly with consistent use of variables and units (B I I G) | 1 |
| | 5. Reporting the final answer with correct significant figures for the solved (unknown)
 variable(s) (B I I) | 1 |
| Completeness | 6. Specifying the correct units, and performing the proper analysis of the solution if needed (B G) | 1 |
| | First 25% | 1 |
| | Second 25% | 1 |
| | Third $\quad 25 \%$ | 1 |
| | Fourth 25% | 1 |

Deduction to both

Classmate Name	Classmate Assessment

Total: 10 points

Example:

A kangaroo can jump over an object 275 cm high. Calculate its vertical speed when it leaves the ground.

Solution: P2.50

$y_{0}=0 \mathrm{~m}$
$y=\underline{2.75} \mathrm{~m}$
$v=0 \mathrm{~m} / \mathrm{s}$
$a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
$v_{0}=?$

Using kinematic equation for the final velocity squared

$$
v^{2}=v_{0}^{2}+2 a\left(y-y_{0}\right)
$$

Solving for the initial velocity
$v_{0}=\sqrt[V]{ }\left[v^{2}-2 a\left(y-y_{0}\right)\right]$
$=\sqrt{ }\left[(0 \mathrm{~m} / \mathrm{s})^{2}-2\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.75 \mathrm{~m}-0 \mathrm{~m})\right]$
$=\underline{7.341662 \mathrm{~m} / \mathrm{s}}$
The kangaroo's vertical speed when it leaves the ground is,
$v_{0}=7.34 \mathrm{~m} / \mathrm{s}$

Problems (3 points each)
Clearly show all work.

1. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

2. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

3. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

4. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

5. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

6. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

7. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

8. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

9. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

10. Solution: \#

	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	
	$1 / 2$	$1 / 2$	

