BIIG Problem Solving Method Buddies Identification Isolation Gourmet

Format	Checkpoint	Entails	BIIG Elements			
Decode	1	Assigning of known information to the corresponding variables, and performing unit conversions	B	I	I	
	2	Assigning of the unknown information to the variable(s)		I	I	
Solve	3	Providing the description of the formula and writing of the formula(e), and including diagram(s) if needed				G
	4	Showing the math clearly with consistent use of variables and units	B	I	I	G
Analyze	5	Reporting the final answer with correct significant figures for the solved (unknown) variable(s)	B	I	I	
	6	Specifying the correct units, and performing the proper analysis of the solution if needed	B			G

Dr. Hiremath
Dr. Hiremath

College Physics - Example 7.4 - Page 231

- Problem (E7.4):

Suppose that you push on the $30.0-\mathrm{kg}$ package on the roller belt conveyor system moving at $0.500 \mathrm{~m} / \mathrm{s}$ with a constant force of 120 N through a distance of 0.800 m , and that the opposing friction force averages 5.00 N . Find the speed of the package at the end of the push.
A. $76 \mathrm{~m} / \mathrm{s}$
B. $2.6 \mathrm{~m} / \mathrm{s}$
C. $2.53 \mathrm{~m} / \mathrm{s}$

D. $2.5 \mathrm{~m} / \mathrm{s}$

- Solution:
$m=30.0 \mathrm{~kg}$
$d=0.800 \mathrm{~m}$
$v_{0}=0.500 \mathrm{~m} / \mathrm{s}$
$F=120 \mathrm{~N}$
$v=$?
$f=-5.00 \mathrm{~N}$
$\theta=0^{\circ}$
The net work is

$$
\begin{aligned}
W_{\text {net }} & =W_{a p p}+W_{\text {friction }} \\
& =F d+f d=[F+f] d \\
& =[(120 \mathrm{~N})+(-5.00 \mathrm{~N})](0.800 \mathrm{~m})=92 \mathrm{~J}
\end{aligned}
$$

Using the work-energy theorem, the net work is

$$
W_{n e t}=1 / 2 m v^{2}-1 / 2 m v_{0}^{2}
$$

Solving the speed of the package at the end of the push

$$
\begin{aligned}
v & =\sqrt{ }\left[(2 / m)\left(W_{n e t}+1 / 2 m v_{0}^{2}\right)\right] \\
& \left.=\sqrt{ }\left[(2 / 30.0 \mathrm{~kg})(92]+1 / 2(30.0 \mathrm{~kg})(0.500 \mathrm{~m} / \mathrm{s})^{2}\right)\right]=\underline{2.5} 2653 \mathrm{~m} / \mathrm{s} \\
& =2.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Dr. Hiremath

College Physics - Example 7.8 - Page 239

- Problem (E7.8):

A $0.100-\mathrm{kg}$ toy car is propelled by a compressed spring. The car follows a track that rises 0.180 m above the starting point. The spring is compressed 4.00 cm and has a force constant of $250.0 \mathrm{~N} / \mathrm{m}$. Assuming work done by friction to be negligible, find how fast it is going at the top of the slope.
A. $0.45 \mathrm{~m} / \mathrm{s}$
B. $200 \mathrm{~m} / \mathrm{s}$
C. $0.687 \mathrm{~m} / \mathrm{s}$
D. $0.69 \mathrm{~m} / \mathrm{s}$

- Solution:

$$
\begin{array}{llll}
m=0.100 \mathrm{~kg} & h_{i}=0 \mathrm{~m} & h_{f}=0.180 \mathrm{~m} & v_{i}=0 \mathrm{~m} / \mathrm{s} \\
x_{i}=-0.040 \mathrm{~m} & x_{f}=0 \mathrm{~m} & k=250.0 \mathrm{~N} / \mathrm{m} & g=9.80 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

$$
v_{f}=?
$$

Since the friction is negligible, the conservation of mechanical energy is

$$
\begin{aligned}
& \mathrm{KE}_{\mathrm{i}}+\mathrm{PE}_{\mathrm{i}}=\mathrm{KE}_{f}+\mathrm{PE}_{f} \\
& 1 / 2 m v_{i}^{2}+m g h_{i}+1 / 2 k x_{i}^{2}=1 / 2 m \boldsymbol{v}_{\boldsymbol{f}}^{2}+m g h_{f}+1 / 2 k x_{f}^{2}
\end{aligned}
$$

Solving for the final velocity at the top of the slope

$$
\boldsymbol{v}_{\boldsymbol{f}}=\sqrt{ }\left[\left(k x_{i}^{2} / m\right)-2 g h_{f}\right]
$$

$$
=\sqrt{ }\left[\left((250.0 \mathrm{~N} / \mathrm{m})(-0.040 \mathrm{~m})^{2} /(0.100 \mathrm{~kg})\right)-2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.180 \mathrm{~m})\right]
$$

$$
=0.687023 \mathrm{~m} / \mathrm{s}
$$

$$
=0.687 \mathrm{~m} / \mathrm{s}
$$

References

1. College Physics

OpenStax College
Rice University, 201.
2. Hiremath, C. N..
"Let Your Success be BIIG: A New Paradigm for Problem-Solving in Science."
International Journal of Physics 3.3 (2015): 113-119.

