BIIG Problem Solving Method

Buddies Identification Isolation Gourmet

Format	Checkpoint	Entails	BIIG Elements			
Decode	1	Assigning of known information to the corresponding variables, and performing unit conversions	В	I	I	
	2	Assigning of the unknown information to the variable(s)		I	I	
Solve	3	Providing the description of the formula and writing of the formula(e), and including diagram(s) if needed				G
	4	Showing the math clearly with consistent use of variables and units	В	I	I	G
Analyze	5	Reporting the final answer with correct significant figures for the solved (unknown) variable(s)	В	I	I	
	6	Specifying the correct units, and performing the proper analysis of the solution if needed	В			G

Dr. Hiremath

Dr. Hiremath

College Physics - Example 7.4 - Page 231

Problem (E7.4):

Suppose that you push on the 30.0-kg package on the roller belt conveyor system moving at 0.500 m/s with a constant force of 120 N through a distance of 0.800 m, and that the opposing friction force averages 5.00 N. Find the speed of the package at the end of the push.

- A. 76 m/s
- B. 2.6 m/s
- C. 2.53 m/s
- D. 2.5 m/s

• Solution:

$$m = 30.0 \text{ kg}$$

 $d = 0.800 \text{ m}$

$$v_0 = 0.500 \text{ m/s}$$
 $F = \frac{120}{0.500} \text{ N}$
 $f = -5.00 \text{ N}$ $\theta = 0^{\circ}$

$$F = \underline{120} \text{ N}$$

$$\theta = \underline{00}$$

The net work is

$$W_{net} = W_{app} + W_{friction}$$

= $Fd + fd = [F+f]d$
= $[(\underline{120} \text{ N}) + (-5.00 \text{ N})] (0.800 \text{ m}) = 92 \text{ J}$

Using the work-energy theorem, the net work is

$$W_{net} = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$$

Solving the **speed** of the package at the end of the push

$$\mathbf{v} = \sqrt{[(2/m)(W_{net} + \frac{1}{2} m v_0^2)]}$$

= $\sqrt{[(2/30.0 \text{ kg})(92 \text{ J} + \frac{1}{2} (30.0 \text{ kg})(0.500 \text{ m/s})^2)]}$ = $\frac{2.5}{2}$ 2653 m/s
= $\mathbf{2.5}$ m/s

1

2

College Physics - Example 7.8 - Page 239

• Problem (E7.8):

A 0.100-kg toy car is propelled by a compressed spring. The car follows a track that rises 0.180 m above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by friction to be negligible, find how fast it is going at the top of the slope.

```
A. 0.45 m/s
```


Solution:

$$m = 0.100 \text{ kg}$$

 $x_i = -0.040 \text{ m}$

$$h_i = 0 \text{ m}$$

 $x_f = 0 \text{ m}$

$$h_f = 0.180 \text{ m}$$

 $k = 250.0 \text{ N/m}$

$$v_i = 0 \text{ m/s}$$

 $q = 9.80 \text{ m/s}^2$

Since the friction is negligible, the conservation of mechanical energy is

$$KE_i + PE_i = KE_f + PE_f$$

$$\frac{1}{2} m v_i^2 + m g h_i + \frac{1}{2} k x_i^2 = \frac{1}{2} m v_f^2 + m g h_f + \frac{1}{2} k x_f^2$$

Solving for the \boldsymbol{final} $\boldsymbol{velocity}$ at the top of the slope

$$\mathbf{v_f} = \sqrt{[(k x_i^2/m) - 2g h_f]}$$

= $\sqrt{[((250.0 \text{ N/m})(-0.040 \text{ m})^2/(0.100 \text{ kg})) - 2(9.80 \text{ m/s}^2)(0.180 \text{ m})]}$
= 0.687023 m/s
= **0.687 m/s**

Dr. Hiremath

3

References

- College Physics
 OpenStax College
 Rice University, 201.
- 2. Hiremath, C. N..

"Let Your Success be BIIG: A New Paradigm for Problem-Solving in Science."

International Journal of Physics 3.3 (2015): 113-119.

Contact: cnhiremath@gmail.com

Dr. Hiremath

4