

 Volume 2

L I B E R A L A R T S M A J O R S G E T I T !

Build Android Apps with App Inventor

All trademarks are acknowledged as belonging to the respective companies.

The Android robot is reproduced or modified from work created and shared by Google and used according to terms described in the
Creative Commons 3.0 Attribution License.

Google Play is a trademark of Google Inc.

The authors thank their families and Fairleigh Dickinson University.

This book does not assume any programming experience whatsoever.

i

Table of Contents

Chapter 1. Introduction .. 1

Mobile Devices and Computers .. 1

What is an “App”? ... 2

App Inventor .. 2

App Inventor Installation .. 3

Review .. 3

Chapter and Lab Summary ... 4

Chapter 2. The Front End .. 6

Your First App ... 6

App Components .. 10

Review .. 14

Chapter and Lab Summary ... 15

Chapter 3. The Back End .. 17

Your First App ... 17

App Blocks .. 20

Review .. 21

Chapter and Lab Summary ... 21

Chapter 4. Design and Program .. 23

StartStop App .. 23

UserNamePassword App .. 26

CanvasDraw App .. 28

PickCourse App .. 32

Review .. 36

Chapter and Lab Summary ... 36

Chapter 5. Program Structure ... 38

App Perspective .. 38

Program Composition ... 38

Program Elements .. 40

Control Flow .. 41

ValidateNumber App ... 41

AssignGrade App .. 44

ii

 .. 47

Repetition With Loops ... 48

SumOfNumbers App ... 48

SumOfNumbers_While App .. 51

Review .. 54

Chapter and Lab Summary ... 55

Chapter 6. Lists ... 57

MoleMashList App .. 57

Trivia App .. 61

Review .. 65

Chapter and Lab Summary ... 65

Chapter 7. Text and Colors ... 67

String Comparisons... 67

Joining and Splitting Strings .. 68

Extracting and Replacing Strings .. 68

Colors .. 68

Make and Split Color ... 68

Review .. 69

Chapter and Lab Summary ... 69

Chapter 8. Animation and Media ... 71

Animation .. 71

Media .. 72

TinyDB .. 72

HungryMonkey App .. 72

PaintPot_PickColorScreen App .. 77

PaintPot_Camera App .. 82

Review .. 85

Chapter and Lab Summary ... 86

Chapter 9. Sensors and Connectivity 88

AccelerometerSensor .. 88

BarcodeScannerSensor .. 88

Clock ... 89

LocationSensor ... 89

NearField .. 89

OrientationSensor ... 89

Connectivity .. 90

LocationMap App .. 90

StockQuote App .. 93

FindConcert App ... 94

iii

Review .. 94

Chapter and Lab Summary ... 95

Chapter 10. Packaging Apps ... 97

Sharing the Source Code .. 97

Sharing the Executable Form .. 98

App Distribution via Google Play ... 99

Review .. 99

Index ... 100

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 1

1

Chapter 1. Introduction

“The only true wisdom is in knowing you know nothing.” –
Socrates, Greek Philosopher.

t’s time to add the 4th R – Reading, wRiting, aRithmetic and algoRithmic
thinking. In a world where the majority of new jobs require science, technology
and math skills, it is time our Liberal Arts majors get IT (Information
Technology)! While employers recognize and value the importance of liberal

education and the liberal arts, they also want liberal arts graduates who are not digitally
challenged. Many employers report a “skills gap” as they have trouble finding recent
graduates qualified with ample digital skills to fill various positions. Meanwhile, a
national educational movement in computer coding instruction is growing at lightning
speeds in schools across the US and many consider coding more like a basic life skill
(which might someday lead to a great job) rather than an extracurricular activity. App
Inventor (AI) serves to narrow this skills gap and increase the versatility of students to
become active creators of technology and “digitally” ready for the workplace rather
than just being passive consumers of technology.

Mobile Devices and Computers

Sales of hand-held devices (smartphones, tablets and phablets) are exploding. These
on-line, social, and increasingly mobile computing devices are ubiquitous and offer
visual, tactile and personal experiences as never before. Mobile devices in our
education landscape are digital and portable - with multimedia capabilities to access the
Internet, and are drastically changing the ways we teach and learn. Developing
applications for such devices enables digital natives to experience mobile technology as
active creators rather than just passive consumers of technology.

Computers (Fig 1.1) are electronic devices which collect and process data (input) to
produce meaningful information (output). The tangible parts constitute the hardware
and the instructions to process data into information comprise the software. A
collection of software that controls the way the computer works and makes it possible
for other programs to function is the operating system (Systems software).

I I C O N K E Y

 Valuable information

 Hands-on exercise

 Review

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 1

 2

Fig 1.1 Computer

Applications software run on top of
the underlying operating system (Fig 1.2)
and cause a computer to perform useful
tasks beyond the running of the
computer itself.

Mobile devices are portable handheld
computers with special mobile operating
systems (such as AndroidTM or iOS).
These devices allow you to do many of
the same things you can do with a
desktop or laptop computer.

What is an “App”?

An “App” (or Application) is a self-contained program or piece of software designed
to fulfill a particular purpose. Mobile “Apps” are the applications software which run
on portable devices. Apps are developed for an underlying operating system.

Android is an operating system for mobile devices and is maintained by Google. It
comes with several standard features and services such as Google Search, Google
Maps, Gmail, Google Earth, etc.

App Inventor

App Inventor (AI) (originally provided by Google and now maintained by the
Massachusetts Institute of Technology) is an open source, Web-based program
development tool that even beginners with no prior programming experience can use
to create mobile apps (with fun and excitement). App Inventor is an intuitive visual
programming environment for mobile Apps development. It runs on various operating
systems and is a cloud-based tool to build apps in your web browser.

Figure 0-1: Hardware and Software Fig 1.2 Hardware and Software

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 1

 3

App Inventor Installation

You can set up App Inventor and start building apps quickly. To start the setup
procedure see http://appinventor.mit.edu/explore/ai2/setup.html. Live Testing
enables you to see your app on your device as you develop it. There are three
download options depending on whether you have wireless internet connection
and/or an Android device (tablet, smartphone, phablet, Kindle, etc.).

Option 1: If you are using an Android device and you have a wireless internet
connection, you can start building apps without downloading any software
to your computer. You will need to install the App Inventor Companion
App for your device. First download and install the MIT AI2
Companion App on your phone. Next connect your computer and your
device to the same WiFi network. Finally open an App Inventor project
and connect it to your device.

Option 2: If you do not have an Android device, you'll need to install software on
your computer so that you can use the on-screen Android emulator. The
emulator works just like an Android device but appears on your computer
screen instead. We will use this option. First you will install the App
Inventor Setup software. Next you will launch a program named
aiStarter, which helps the browser to communicate with the emulator.
Finally you will connect to the emulator.

Option 3: If you do not have a wireless internet connection, you'll need to install
software on your computer so that you can connect to your Android
device over the Universal Service Bus (USB) interface. First install the App
Inventor Setup Software. Next download and install the MIT AI2
Companion App on your phone. Finally launch the aiStarter program.

You are now ready to build apps and you will need a Gmail account to start
inventing apps. The best way to get started with App Inventor is to try the
beginner tutorials at http://appinventor.mit.edu/explore/ai2/beginner-
videos.html and learn the basics.

There are two aspects to developing apps. The Front End (AI
Designer) - How will your app look? The Back End (AI Blocks
Editor) - How will it function? Chapters 2 and 3 elaborate further.

Review

 Majority of new jobs require science, technology and math skills. Employers seek
liberal arts graduates who are not digitally challenged. Skills gap- not enough
graduates qualified with ample digital skills.

 The 4 Rs – Reading, wRiting, aRithmetic and algoRithmic thinking.

http://appinventor.mit.edu/explore/ai2/setup.html
http://appinventor.mit.edu/explore/ai2/beginner-videos.html
http://appinventor.mit.edu/explore/ai2/beginner-videos.html

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 1

 4

 Mobile computing devices are ubiquitous, digital and portable. They offer visual,
tactile and personal experiences.

 Computers are electronic devices which process data into meaningful information.
 Software - instructions to process data into information.
 Operating system (Systems software) - controls how a computer works and

enables other programs to function. Android or iOS are examples mobile
operating systems.

 Applications software performs useful tasks. An App is a self-contained program
for a particular purpose. Mobile Apps are the applications software which run on
portable devices.

 App Inventor is an intuitive visual programming environment for mobile Apps
development. It is a cloud-based tool to build apps in your web browser.

 Front End - AI Designer - app appearance.
 Back End - AI Blocks Editor - app functionality.

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 1

 5

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 6

Chapter 2. The Front End

“Design can be art. Design can be aesthetics. Design is so simple,
that's why it is so complicated.” – Paul Rand, an American art director
and graphic designer.

he App Inventor Designer enables you to design the front end of your app,
or the “User Interface (UI)”.

The UI enables any user to interact with mobile devices or computers.
You start creating your app by first designing the UI in the Designer.
Users of your app will interact with your design using the various
components such as Buttons, Check Boxes, Text Boxes, etc. You

design your app's UI by adding components in the Designer window.

The Designer Window has five distinct columns or panes:

 Palette – consists of several different tabs - User Interface, Layout, Media,
Drawing and Animation, Sensors, etc. that have components which can be
dragged onto the screen in the Viewer (introduced next).

 Viewer – contains the screen to which you add different components by
dragging them from the Palette. The non-visible components are shown below
the screen.

 Components – a hierarchical listing of all the components on your screen.

 Properties – displays the properties or characteristics of a component selected
in the Components area.

 Media – lists the various media resources used by the app – for example:
image, audio and video files.

Your First App

After App Inventor has been setup you are now ready to develop your first
Android app - HelloPurr. This app enables a user to click on a picture of a cat to
hear it meow. Please see http://appinventor.mit.edu/explore/ai2/hellopurr.html
for a detailed tutorial about this basic app. This link also allows you to download
the image and audio resources you will use in this development process.

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Review

http://appinventor.mit.edu/explore/ai2/hellopurr.html

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 7

This app uses 2 basic components (Button and Label) from the User Interface tab
and a Sound component from the Media tab.

Here are the steps:

1) Navigate to http://appinventor.mit.edu in a web browser and click on the
CREATE button (Fig 2.1).

2) Sign in using your gmail account. You may see a message about a survey –
which you can take later – then you will see a welcome message click
Continue and finally you will see a message that you have no projects in AI
yet (Fig 2.2).

Fig 2.1 The CREATE button

Fig 2.2 No projects

http://appinventor.mit.edu/

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 8

3) Click on New Project and create a project named HelloPurr. Now you can
see the 5 distinct window panes (Fig 2.3).

Fig 2.3 The 5 panes

4) You can add components from the Palette pane to the Viewer pane. First add
a Button and then a Label by simply dragging them from the User Interface

tab of the Palette pane to Screen1 in
the Viewer pane. Remember to
change the names of these 2
components (Button1 and Label1)
to something meaningful in the
Components tab. It is a good idea
to prefix the button component
with btn_ and the label component
with lb_. Rename the 2
components to btn_HelloCat and
lb_PetTheCat (Fig 2.4).

5) Click on a component in the Components pane to see its properties in the
Properties pane. Click on the button to change two of its properties – Image
and Text. Click on the Image property (None..) and click Upload File. Select
the file of the cat’s picture which you downloaded earlier. Now your button
has the picture of the cat. Also, delete the “Text for Button1” in the Text
property. Similarly, for the label, change its Text property to “Pet the Kitty!”,
change the BackgroundColor to Blue, FontSize to 30 and TextColor to Yellow
(Fig 2.5).

Fig 2.4 Component Names

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 9

6) Drag the Sound component from the Media tab of Palette pane to the Screen1
in the Viewer pane and rename it to Snd_Meow. Notice the Sound
component is a non-visible component and sits under the Screen1. In the
Properties pane click on its Source property (None..) and click Upload File to
upload the sound file (the cat’s meow sound) which you saved earlier.

7) Now the app has a picture of the cat and a sound and the screen looks like the
one shown in Fig 2.6.

Fig 2.5 Button and Label Properties

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 10

Fig 2.6 HelloPurr App Screen

8) All the above work is done in the AI Designer. Next we will add functionality
to this app so that when the user pets the kitty it meows. This is the back end
which will be covered in the next chapter.

App Components

See http://ai2.appinventor.mit.edu/reference/components/ for a detailed listing of all
the components and their properties. Many components generate events which are
handled in the Blocks Editor to perform some task. We look at the following tabs in
the Designer’s Palette pane – User Interface, Layout, Media, Drawing and Animation,
Sensors, etc.

http://ai2.appinventor.mit.edu/reference/components/

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 11

The User Interface tab contains the following components:

 Button – one of the easiest ways for a user to interact with an app. Clicking on
a button generates a “Button Click” event, where you can add behavior (in the
Blocks Editor) to do some task.

 CheckBox – provides a way for a user to check or uncheck an item and
generates the “Checkbox Changed” event.

 DatePicker – used to set date and has the “DatePicker AfterDateSet” event.

 Image – displays images which can be set in the Designer or the Blocks
Editor and has no events.

 Label – used to display text on the screen and has no events.

 ListPicker – enables a user to pick from a list and has the “ListPicker
AfterPicking” event.

 ListView – displays a list on the screen and allows user to pick an item and has
the “ListView AfterPicking” event.

 Notifier – displays alert messages and dialogs to the user and creates a log.

 Password TextBox and TextBox – enable users to enter text to be used by
the app. TextBox displays the user text on the screen, whereas the
PasswordTextBox hides the input text and displays asterisk or “*” instead of
the actual text.

 Screen – is a top-level component containing all other components in the app.

 Slider – provides a progress bar with a slider thumb which can be dragged left
or right and has the “Slider PositionChanged” event.

 Spinner - displays a pop-up with a list of elements that can be set in the
Designer or the Blocks Editor and has the “Spinner AfterSelecting” event.

 TimePicker – is a button which allows user to select a time when clicked and
has the “TimePicker AfterTimeSet” event.

 WebViewer – enables users to view Web pages and has no events.

User Interface

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 12

Many of these components are used in building apps with varying functionalities.
The next chapter discusses the Back End which adds functionality and behavior to
our app by using events on these components.

By default, components get added one below the other on the screen in a vertical
fashion. The layout tab has three arrangement components to configure the screen
differently. These components serve as hidden containers to house groups of
other components. They have the Height, Width and Visibility properties.

 Horizontal Arrangement - displays a group of components laid out from
left to right.

 Vertical Arrangement – displays a group of components laid out from
top to bottom, left-aligned.

 Table Arrangement – displays a group of components in a tabular
fashion. In addition to height, width and visibility properties, this also has
the Rows and Columns properties.

The Media tab has multimedia components related to images, audio, video, text,
speech, player, recorder, and translation services. In addition to triggering events,
most of these components also have methods which for example may start or stop
recording etc.

 Camcorder – is used to record a video using the device's camcorder and
has the AfterRecording event and the RecordVideo method.

 Camera - is used to take a picture using the device's camera and has the
AfterPicture event and the TakePicture method.

 ImagePicker – a button which when tapped displays the devices image
gallery and enables users to select an image. This has the AfterPicking
event and the Open method.

 Player – plays audio and controls the vibration of the device. This has the
Start, Stop, Pause and Vibrate methods.

 Sound – plays audio files and optionally vibrates. Needs a source which is
the name of the sound file to play. This has no events but has the Play,
Pause, Resume, Stop and Vibrate methods.

Layout

 Media

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 13

 SoundRecorder – used to record a audio and has the
AfterSoundRecorded event and the Start and Stop methods.

 SpeechRecognizer – uses Android's speech recognition feature to
convert the spoken sound into text. This has the AfterGetting event and
GetText method.

 TextToSpeech – used to enable the device to speak text and needs the
TTS Extended Service Android app to work.

 VideoPlayer – plays video files which can be in any of the formats -
Windows Media Video (.wmv), 3GPP (.3gp), or MPEG-4 (.mp4).

 YandexTranslate – is powered by the Yandex Translation service and
needs Internet access to translate words and sentences between different
languages.

The Drawing and Animation tab has components related to movement on screen
and animation using ball or image sprites (sprite – a computer graphic that can be
moved around on a screen) on a touch-sensitive canvas.

 Ball – a round sprite placed on a canvas, can react to touch, drag, and can
interact with other sprites as well as canvas edges. This has several
properties (including: speed, heading and interval) and has events for
detecting collisions and movement.. It also has methods to bounce, move
etc.

 Canvas – a 2-dimensional touch-sensitive rectangular panel which is used
to place and move sprites.

 ImageSprite – similar to a ball sprite but uses any image instead of ball.

The Sensors tab provides non-visible components that detect location, orientation
and shaking of the device. Also provides a barcode scanner component and a
component for some Near Field Communication (NFC).

 AccelerometerSensor – detects shaking and measures acceleration. This
has the AccelerationChanged and Shaking events.

 BarcodeScanner – reads a barcode and has the AfterScan event and the
DoScan method.

 Drawing and
Animation

Sensors

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 14

 Clock – a non-visible component - provides a timer to signal events at
regular intervals and generates the “Timer” event.

 LocationSensor – provides location information, including longitude,
latitude, altitude (if supported by the device), and address. This can also
perform “geocoding” – converting an address to latitude and longitude.

 NearField – supports the reading and writing of text tags for NFC.

 OrientationSensor – determines the phone's spatial orientation and when
the orientation changes, it generates the OrientationChanged event.

In addition to the above tabs, there are other tabs which house the Social,
Storage, Connectivity etc. components.

In this chapter we looked at the design aspect of an app –The Front End (AI
Designer) - How will your app look? In the next chapter we will explore The Back
End (AI Blocks Editor) - How will it function?

Review

 User Interface (UI) – Front End of an app – enables user to interact with mobile
devices.

 AI Designer is used to design the UI. AI Designer includes Palette, Viewer,
Components, Properties and Media.

 Sign in using your gmail account to create a new project.
 Build UI by dragging components from Palette to Viewer and set required

properties.
 Choose App components from the following tabs: User Interface, Layout, Media,

Drawing and Animation, Sensors, etc.
 User Interface tab includes basic components such as Button and Label amongst

various other components.
 Layout tab has arrangement components to configure the screen.
 Media tab houses the multimedia components related to images, audio, video, text,

speech, player, recorder and translation services.
 Drawing and Animation tab has components related to movement on screen and

animation.
 Sensors tab provides components to detect location, orientation and shaking of

device.

Other

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 15

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 2

 16

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 3

 17

Chapter 3. The Back End

“Nothing will work unless you do.” – Maya Angelou, an African-
American author, poet, dancer, actress, and singer.

he App Inventor Blocks Editor enables you to add functionality to your app.
You can program the app's behavior simply by putting blocks together,
without even writing a single line of program code.

In Chapter 2 we used the App Inventor Designer to add different
components to the HelloPurr App. In this chapter we will add
functionality to this app which enables a user to click on a picture of a
cat to hear it meow. We are now ready to add behavior to our app. For

this we use the Blocks Editor.

The Blocks Editor has two distinct columns or panes:

 Blocks – consists of several different tabs – Built-in, Screen1 and Any
component tabs that have code blocks which can be dragged onto the Viewer
(introduced next).

 Viewer – contains the workspace to which you add different code blocks by
dragging them from the Blocks pane.

Your First App

The HelloPurr app enables a user to click on a picture of a cat to hear it meow. In
order to achieve this functionality we need to program the different components we
have added to our screen. We do this by clicking on “Blocks” in the upper right
corner of our App Inventor Designer browser above the Properties pane (Fig 3.1).

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Review

Fig 3.1 Blocks

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 3

 18

The following steps demonstrate how to achieve the required functionality.

1) Click on the btn_HelloCat drawer in the Blocks pane of the Blocks Editor
under the Screen1 tab. This opens up the events and properties associated with

this button component. Drag the event
onto the workspace to the right. This is called the event handler block.

2) Click on the Snd_Meow drawer in the Blocks pane under the Screen1 tab.
This opens up the properties and commands (methods) associated with this
sound component. Notice there is no event (mustard color) associated with
the sound component. Drag the command block to fit into the btn_HelloCat

event handler – - hear a clicking sound
just like a puzzle piece. The purple call piece, called the command block, is
placed in the body of the event handler and is executed when the event
handler runs.

3) Your first app is now ready to be tested on an Android device or an emulator.
For now we will use the emulator. Click on Connect and select Emulator.
(Fig 3.2).

Fig 3.2 Connect to Emulator

Now you will see it trying to start the emulator (Fig 3.3).

Fig 3.3 Connecting to Emulator

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 3

 19

Next you will see a black phone screen, a MIT App Inventor 2 screen and
finally a Lock-Unlock screen.

Finally (after unlocking), you will see the HelloPurr App
on the emulator (Fig 3.5). The picture of the cat is
actually the button btn_HelloCat which you added
earlier using the AI Designer in Chapter 2. The label
lb_PetTheCat has the message “Pet the Kitty!” which
was set as the label’s Text property in the Designer too.
The meow sound file was uploaded as the source file in
the properties of sound Snd_Meow component. You
can click anywhere on the picture of the cat to hear it
meow. Try it now! Works just like it would on a real
Android device.

Please note that sometimes there may be an issue
with the Sound component on some devices. If you
see an "OS Error" and the sound does not play - or
is delayed in playing, go back into the Designer and
try using a Player component (found under Media)
instead of the Sound component.

Fig 3.4 Emulator Screen

Fig 3.5 HelloPurr App

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 3

 20

App Blocks

See http://ai2.appinventor.mit.edu/reference/ for a detailed listing of all the blocks
you can use to build your apps. We look at the following tabs in the Block editor’s
Blocks pane. – Built-in, Screen1, and Any component..

The Built-in tab contains the following drawers:

 Control – used to test a condition and perform an action based on the
result, repeats an action for each element in a “for each” block or while or
do loops. This also houses the controls for opening/closing “another
screen” etc.

 Logic – used for logical operations: not, or, and. Also used for
comparison operations: equality, inequality. Used to set components to
constant logical values of true/false.

 Math – houses the various mathematical operations: <, <=, >, >=, +, -,
*, /, and mathematical functions such as random integer, random fraction,
sqrt, min, max, etc.

 Text – houses the various string operations: join, string, split, uppercase,
lowercase, replace, length, trim, segment, compare texts, contains, etc.

 List – houses the various list operations: join, create, make list, add items
to list, is list empty, is item in list, etc.

 Colors – houses the various colors and operations: make color, split color,
etc.

 Variables – houses the various operations to create, set and get variables
which will be used in your code blocks.

 Procedures – houses the various procedure (sequence of blocks together
into a group) operations.

The Screen1 tab contains a drawer for each of the components you have added in the
Designer. For the HelloPurr App you will find the button, the label, and the sound
components under Screen1 tab. You can drag any event handlers and command
blocks to use in your code blocks in your workspace as we did in the HelloPurr App
when we wanted the sound to play on the click of the button.

Built-in

Screen1

http://ai2.appinventor.mit.edu/reference/

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 3

 21

The Any component tab is an advanced feature and contains the drawers that allow
you to get/set different properties and call functions on any component. This may not
mean much for a small app but when you have bigger apps with hundreds of blocks in
place and you do not want to repeat the same thing multiple times, you will really
appreciate this convenient feature. For example, if you have a App with two labels, you
can set the label background color for either label by using this feature.

In this chapter we looked at the functional or program aspect of an app – The Back
End (AI Blocks Editor) - How will it function? In the next chapter we will explore
the combination of the design and program aspect.

Review

 App Inventor Blocks Editor – Back End of an app – enables you to add
functionality to your app.

 Program your app’s behavior by putting blocks together.

 The Blocks editor has Blocks and Viewer panes.
 Blocks pane contains – Built-in, Screen1 and Any component tabs that have code

blocks which can be dragged onto the Viewer.
 Viewer contains the workspace to which you add code blocks by dragging them

from the Blocks pane.
 The Built-in tabs have different drawers for different functionality such as Control,

Logic, Math, Text, etc.
 Your app can be tested on an Android device (smartphone or tablet) or an

emulator.

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

Any
component

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 3

 22

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

Chapter 4. Design and Program

“The most important property of a program is whether it
accomplishes the intention of its user.” – C. A. R. Hoare, a British
Computer Scientist and a fundamental contributor to the definition and design of
programming languages.

he previous two chapters introduced you to various design components and
demonstrated how to add behavior to your app simply by putting blocks
together, without even writing a single line of program code.

In this chapter we will focus on how to use the different components
and the program code blocks to generate something meaningful. An
important requirement of an app is that it should accomplish what the
user wants.

StartStop App

Design and program an app which has two buttons – Start and Stop and displays
appropriate status and image when a button is pressed. Buttons are useful as they can
trigger some action when clicked. We will use the following components in this app.

 Label – to display the status and for blank lines on screen

 Button – two buttons for Start and Stop

 Image – two images for Start and Stop

 Horizontal Arrangement – to hold buttons and images

Start a New Project named StartStop. The AI Designer will open. Set the Screen1’s
Title property to “StartStop”. You may also fill in the AboutScreen property to “App
for Start Stop” – this will be displayed when user clicks on About this Application
when your app runs.

The screen also has an Icon property where you can upload an icon image file, not
more than 150 x 150 pixels (picture element) in height and width, which will display on
the device instead of the default App Inventor image. This does not matter when we
test using an emulator.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Review

Components

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 24

 Label lb_Status (with Properties: BackgroundColor - Yellow, FontBold,
FontSize - 18, Text – Current Status -, Width – Fill parent)

 Label lb_Blank (with Properties: FontSize - 36, empty Text)

 Horizontal Arrangement HA_Images (with default Properties) with

– Label lb_LeftSpace (with Properties: Text - 30 blank characters)

– Image im_Start (with Properties: Picture – start.png, Visible: hidden)

– Image im_Stop (with Properties: Picture – stop.png, Visible: hidden)

 Label lb_Blank2 (with Properties: FontSize - 36, empty Text)

 Horizontal Arrangement HA_Buttons (with Properties” width – Fill
parent) with

– Button btn_Start (with Properties: BackgroundColor – Green,
FontBold, FontSize - 18, Text – START, Width – Fill parent). Note
that buttons are enabled by default.

– Button btn_Stop (with Properties: BackgroundColor – Red,
FontBold, FontSize - 18, Text – STOP, Width – Fill parent).

Fig 4.1 displays the Designer - Viewer and Components.

Fig 4.1 Designer - StartStopApp

Designer

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 25

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the btn_Start in the Blocks pane and drag the click event to the

workspace . Inside this add several
code blocks to do the following

– set background color to Green and text of lb_Status to “Current
Status – Start Button Pressed”

– make im_Start visible and im_Stop invisible

– enable btn_Stop and disable btn_Start

 Duplicate this code block and make necessary changes for btn_Stop click
event.

Fig 4.2 displays the Blocks.

Fig 4.2 Blocks - StartStop App

Blocks

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 26

UserNamePassword App

Design and program an app which lets a user enter UserName in a textbox and
Password in a password textbox and has a button – Display which displays the
username on to the screen when pressed.

A TextBox component enables users to input text (which is visible on the screen) into
your app. A PasswordTextBox also allows users to input text but this text is
displayed with “*” on the screen and useful for allowing users to input sensitive data
such as passwords etc. We will use the following components.

 Label – to display messages on screen

 TextBox – to enable user to enter UserName

 PasswordTextBox – to enable user to enter password

 Button – a buttons for Display

 Horizontal Arrangement – to hold labels, textbox, password textbox etc.

Start a New Project named UserNamePassowrd. The AI Designer will open. Set
the Screen1’s Title property to “UserNamePassword”. You may also fill in the
AboutScreen property to “App for UserName and Password” – this will be displayed
when user clicks on About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Horizontal Arrangement HA_UserName (set Width property to Fill
parent …) containing

– Label lb_EnterUserName (with Properties: BackgroundColor -
Cyan, Text – Enter User Name:, Width – Fill parent)

– TextBox tb_UserName (with Properties: Hint – Enter your
UserName, Width – Fill parent)

The TextBox has a Hint property where you can enter a hint for the
user . This is helpful so that the user knows what your app expects in
that textbox.

 Horizontal Arrangement HA_Password (set Width property to Fill
parent …) containing

– Label lb_EnterPassword (with Properties: BackgroundColor – Pink,
TextColor - Blue, Text – Enter Password:, Width – Fill parent)

Components

Designer

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 27

– PasswordTextBox ptb_Password (with Properties: Hint – Enter your
Password, Width – Fill parent)

When a user types in a PasswordTextBox, its contents simply show up
as a string of *. This is very useful when you are requesting sensitive data
from users (such as passwords, etc.).

 Button btn_Display (with Properties: BackgroundColor – Blue, Shape –
Oval, Text – Display, TextAlignment – Center, TextColor – Yellow,
Width – Fill parent).

 Label lb_Display (with Properties: BackgroundColor - Yellow, Text –
Your UserName, TextColor – Blue, Width – Fill parent)

Fig 4.3 displays the Designer - Viewer and Components.

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the btn_Display in the Blocks pane and drag the click event to the
workspace. Inside this add several code blocks to do the following

– set lb_Display.Text to “Your Username is: “ joined with
tb_UserName.Text. For this we use the join code block

found in the Built-in Text block, which simply joins two

strings. The blue and white box is a mutator that allows blocks to
expand, shrink, or even change functionality.

– clear out the text in tb_UserName and ptb_Password.

Blocks

Fig 4.3 Designer - UserNamrPassword App

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 28

Fig 4.4 displays the Blocks.

Fig 4.4 Blocks - UserNamePassword App

CanvasDraw App

Design and program an app which uses a Draw button to draw shapes and text on a
canvas. Two buttons Draw and Clear are used for drawing and clearing.

A Canvas component allows users to draw shapes and text. It also provides a touch
sensitive area which we will explore in the chapter on Animation. For this app, we will
use the following components.

 Canvas – to draw circle and lines and write text

 Buttons – two buttons for Draw and Clear

 Horizontal Arrangement – to hold buttons

Start a New Project named CanvasDraw. The AI Designer will open. Set the
Screen1’s Title property to “CanvasDraw”. You may also fill in the AboutScreen
property to “App for CanvasDraw” – this will be displayed when user clicks on About
this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Canvas cn_Blank (with Properties: BackgroundColor - LightGrey,
PaintColor – Red, Width – 300 pixels and Height - 300 pixels)

The Canvas has a BackgroundImage property where you can upload
an image file. We will not set this property in the Designer. Instead, we will
first upload an image file (chakra,png) in the Media pane and then use the
Screen initialize code block to set the BackgroundImage to the image
contained in this file.

 Horizontal Arrangement HA_DrawClear (set Width property to 300
pixels) containing

Components

Designer

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 29

– Button btn_Draw (with Properties: BackgroundColor – Green, Text
– Draw:, Width – Fill parent)

– Button btn_Clear (with Properties: BackgroundColor – Orange, Text
– Clear:, Width – Fill parent)

Fig 4.5 displays the Designer - Viewer and Components.

Fig 4.5 Designer - CanvasDraw App

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate Screen1 in the Blocks pane and drag the when screen1 Initialize
event to the workspace. Inside this add a code block to do the following

– set cn_Blank.BackgroundImage to “chakra.png“ which had been
previously uploaded in the Media pane, taking care to match the
filename exactly to the file name in the Media pane of the designer.

 Locate the btn_Draw in the Blocks pane and drag the click event to the
workspace. Inside this add several code blocks to do the following

– set cn_Blank.PaintColor to .

Blocks

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 30

– draw a circle using cn_Blank.DrawCircle method (with x – 150, y–
150 and r – 150). This method Draws a circle (filled in) at the given (x,
y) coordinates on the canvas, with the radius r.

The App Inventor coordinate system is based on an (x,y) grid (Fig 4.6)
where x is the horizontal axis and y is the vertical axis. The upper left
corner of the screen is location (0,0). i.e. x=0 and y=0. The x coordinates
get larger as you move to the right and the y coordinates get larger as
you move down. (Please note that this is different from a mathematical
coordinate grid where x increases to the right but y decreases as you move
down).

– set cn_Blank.PaintColor to

– draw 2 lines using cn_Blank.DrawLine method from (x1,y1) to
(x2,y2) (with x1 – 150, y1– 150, x2 – 75, y2 – 25) and from (x1,y1) to
(x2,y2) (with x1 – 150, y1– 150, x2 – 225, y2 – 25) These methods
draw two black lines on the red circle from a common point (150,150).

Fig 4.6 Canvas (x,y) grid

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 31

– set cn_Blank.PaintColor to

– write text on the canvas using cn_Blank.DrawTextAtAngle Draws
the specified text (“Have a slice!”) starting at the specified (x,y) (75,
250) coordinates at the specified angle (15 degrees) using the values of
the FontSize and TextAlignment properties as set in the designer.

 Locate the btn_Clear in the Blocks pane and drag the click event to the
workspace. Inside this call cn_Blank.Clear method to clear the canvas.
This removes all the drawings (the circle, the 2 lines and the text) we made
earlier using the Draw method.

Fig 4.7 displays the Blocks.

Fig 4.7 Blocks - CanvasDraw App

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 32

Here are the screen shots of CanvasDraw App as it runs on the emulator – Initial,
after Draw button clicked and after Clear button clicked (Fig 4.8).

PickCourse App

Design and program an app which uses a List Picker to pick a course and a CheckBox
to indicate a Lab section. Two buttons Display and Clear are used for displaying the
selection and clearing. Use the ListPicker AfterPicking event to put out a message
“You have picked a course”. We can also add a Texting component and a button to
send a text message.

A ListPicker component displays a list of texts for the user to choose among and
allows user to choose one. A CheckBox component is useful for either checking or
un-checking an item. For this app, we will use the following components.

 ListPicker – to choose a course from a given list of courses

 CheckBox – to indicate a course has a Lab section

 Buttons – two buttons for Display and Clear

Components

Fig 4.8 Emulator Screen shots - CanvasDraw App

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 33

 Horizontal Arrangement – to hold buttons

 Image – to show school logo on screen

Start a New Project named PickCourse. The AI Designer will open. Set the
Screen1’s Title property to “PickCourse”. You may also fill in the AboutScreen
property to “App for Picking a Course” – this will be displayed when user clicks on
About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Image im_FDU_CourseFinder (with Properties: Picture – fdu_logo.png,
Width – Fill parent, Height - 75 pixels)

 Horizontal Arrangement HA_PickCourse (set Width property to Fill
parent) containing

– ListPicker lp_Course (with Properties: BackgroundColor – Yellow,
ElementsFromString – Biology, Chemistry, Computer Science,
Creative Writing, French, History, Mathematics, FontBold, Text –
Pick a Course:, Width – Fill parent)

The ListPicker has a ElementsFromString property where you can enter
a comma separated list of items. We will set this property in the Designer.
You can also set the list of items by setting the Elements property to a List
in the Blocks editor.

– CheckBox cb_Lab (with Properties: BackgroundColor – Cyan,
FontBold, Text – Has a Lab, Width – Fill parent)

 Label lb_Blank1 (with Properties: FontSize - 36, No Text)

 Label lb_CoursePicked (with Properties: No Text)

 Label lb_Blank2 (with Properties: FontSize - 36, No Text)

 Horizontal Arrangement HA_Display (set Width property to Fill parent)
containing

– Button btn_Display (with Properties: BackgroundColor – Magenta,
FontBold, Text – Show, TextColor - White)

– Button btn_Clear (with Properties: Text – Clear:)

 Label lb_Blank3 (with Properties: FontSize - 36, No Text)

Designer

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 34

 Label lb_Display (with Properties: FontBold, FontItalic, FontSize - 36,
No Text, TextColor – Blue, Width – Fill parent)

Fig 4.9 displays the Designer - Viewer and Components.

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the lp_Course in the Blocks pane and drag the AfterPicking event
to the workspace. Inside this add code block to do the following

– set lb_CoursePicked.Text to “You picked ” joined with
lp_Selection.Text. For this we use the join code block found in the
Built-in Text block, which simply joins two strings.

 Locate the btn_Display in the Blocks pane and drag the click event to
the workspace. Inside this add code block to do the following

– set lb_Display.Text to 6 strings joined together: “You picked ”, lp_
Selection.Text, “ and ”cb_Lab.Text, “ is ”, and cb_Lab.Checked.
For this we use the join code block found in the Built-in Text block,
which simply joins these 6 strings. By default the join only has 2 slots

Blocks

Fig 4.9 Designer - PickCourse

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 35

for strings to join. You can click on the blue square in the upper left
corner of join and expand it to accept more strings.

Note that cb_Lab.Text is simply the Text property of the CheckBox
and cb_Lab.Checked is the actual check/uncheck - a Boolean value
which can either be true or false.

 Locate the btn_Clear in the Blocks pane and drag the click event to the
workspace. Inside this call cb_Lab.Checked to false. .Clear method to
clear the lb_CoursePicked and lb_Display Text.

Fig 4.10 displays the Blocks.

In this chapter we looked at the combination of the design and program
aspect of an app with 4 different apps. In the next chapter we will dig
deeper into the program structure of an app.

Fig 4.10 Blocks - PickCourse

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 36

Review

 An app should accomplish what the user wants.

 Users can create something meaningful using different components and program
code blocks.

 Screen has an Icon property where you can upload a icon image file, which will
display on the device instead of the default App Inventor image.

 TextBox enables users to input text into your app and is visible on the screen. Also
has a Hint property to let the user know what your app expects in that textbox.

 PasswordTextBox allows users to input text but this text is displayed with “*” on
the screen - useful for allowing users to input sensitive data such as passwords.

 Mutator allows blocks to expand, shrink, or even change functionality.

 Canvas provides a touch sensitive area and allows users to draw shapes and text.

 The App Inventor coordinate system is based on an (x,y) grid with upper left
corner location (0,0). x gets larger to the right and y as you move down.

 ListPicker displays a list of texts for user to choose among (to choose one). List
elements can be set in the Designer or the Blocks editor.

 CheckBox is useful for either checking or un-checking an item. Checked property
is a Boolean value which can either be true or false.

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 4

 37

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

Chapter 5. Program Structure

“Any sufficiently advanced technology is indistinguishable from
magic.”– Arthur C. Clarke, a British science fiction writer.

he previous three chapters introduced you to various design components and
demonstrated how to add behavior to your app simply by putting blocks
together, without even writing a single line of program code.

In this chapter we will focus on the program structure and explore
different ways to compose programs. From chapter 1 you know that
an app is a self-contained program or piece of software designed to
fulfill a particular purpose. When composing programs we need to

keep this fact in mind.

App Perspective

User’s and programmer’s view apps differently. From the user’s perspective an app is

something you download (for free or very cheap) from Apple App Store, Google

Play, Windows Phone Store, etc. to your mobile device. The app may do some
work (maybe just one function) and may provide some entertainment.

From the programmer’s perspective an app is like a recipe with ingredients and
directions or step-by-step instructions. It is an application program or software that you
use online or on mobile devices and is a series of program instructions that tell the
device what to do. In this chapter we adopt this perspective when composing
programs.

Program Composition

Although programs can be complex each instruction is generally quite simple. The
device starts at the beginning and works through, step-by-step, instruction by
instruction, until it gets to the end.

An app is based on the event-driven programming paradigm, in which the flow of
the program is determined by events; which could be: sensor outputs, user actions
(mouse clicks, key presses), or even messages from other programs. Every component
has built-in functions that handle some events. For example, the button component
has a Click event handler. These built-in functions, called Event handlers, are
programmable and you can put the instructions you want the app to execute (when the
corresponding event happens) right in the event handler code block. In other words,

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Review

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 39

you can control how the app reacts to the corresponding events by programming the
reactive behavior the app should take when the event occurs.

Fig 5.1 shows the architecture of an app which is composed of:

 Components - objects or elements (visible or non-visible) used to create an
application.

 Variables - named containers defined in the program that store value.

 Behavior - defines how the app should respond to events which can be

- user initiated event - for example when the user clicks a button

- external event - for example when the phone receives a text message.

- initialization event – when the app launches

- timer event – when a timer fires

 Procedures - a group of one or more statements that may be called upon at any
time for execution by the program.

App

Components

Visible

Buttons, TextBox

Non-Visible

Sound

Variables Behaviors

Events

Button.Click

Properties

Label.Set Text

Methods

Canvas.DrawCircle

Procedures

Fig 5.1 App Architecture

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 40

Program Elements

App Inventor is based on the Object-Oriented Programming (OOP) approach which
is distinct from procedural (or functional) programming approach.

The procedural programming approach is based on a top down design principle and
the program itself is made up of modules or procedures and sub procedures. One of
the main difficulties with this type of programming is that software maintenance can be
difficult and time consuming. Whenever a change is made to the main procedure
(top), it can cascade to several or all procedures (sub procedures) in the path below.

Object oriented programming is meant to address these difficulties (of procedural
programming) and uses abstraction (in the form of objects) to create models based on
the real world environment. Objects are capable of passing messages, receiving
messages, and processing data. The aim of object-oriented programming is to increase
the flexibility and maintainability of programs. Let us now see how the OOP approach
works in App Inventor.

The various program elements used in an app are:

An object is a program’s fundamental building block. It can be a visible component
such as a button or a non-visible component such as a sound component. An object
has properties and methods associated with it.

 Property – is a characteristic of an object – for example btn_Start.Text is
the text property of the btn_Start object.

 Method – is an action that an object can perform – for example btn_Start
.click is the click method of the btn_Start object.

 A statement is an instruction that performs a program task. For example – the set
lb_Display.Text to Hello which sets the Text property of the label object to the text
Hello.

A procedure is a group of one or more statements that may be called upon at any time
for execution by the program. We will see procedures in a later chapter. Groups of
statements can be written as a procedure which can be called many times from
different places.

 A variable is a named container defined in the program that stores a value.

An operator is an arithmetical symbol. For example, + addition, - subtraction, *
multiplication, and / division operators

A comment is optional and describes the purpose of a statement. It is a good idea to
incorporate comments in your program since it makes your code easy to understand by
others.

Object

Statement

Procedure

Variable

Operator

Comment

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 41

Control Flow

The statements inside the code blocks are generally executed step-by-step from top to
bottom. However, you may want to perform different actions in different situations
based on user input. You thus need the ability to control the flow of your program
letting it make decisions on what code to execute next driven by a decision which may
be based on user input for example.

The Control drawer in the Built-in tab in the Blocks pane of the Blocks Editor houses
a number of blocks which enable your app to perform different actions depending
upon the results of a conditional test. The given statements are only executed when the
tested condition is true, otherwise these statements are skipped. This is easily achieved
using the if-then block from the Built-in Control tab. The conditional test can be a
simple test as in the ValidateNumber app below, or, it can be a complex one using

several layers of logic with and blocks
from the Logic drawer.

The if-then block from the Built-in Control tab has options for providing alternatives

using else and else if. making it possible to
nest multiple conditions as demonstrated in the AssignGrade app.

ValidateNumber App

Design and program an app which requests user to enter a positive number and then
checks if the entered number is valid or not. This app uses a if-then test block from
the Built-in Control tab in the Blocks pane of the Blocks Editor which we saw in the
Chapter 3 earlier. This app demonstrates the use of a variable for setting the
appropriate message to display on validation and also shows how to add comments to
the various blocks.

The if statement allows you to control if a program enters a section of code or not
based on whether a given condition is true or false. One of the important functions of
the if statement is that it allows the program to select an action based upon the user's
input. For example, we will use an if statement to check whether the user has entered a

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 42

valid number. For this app, we will use the following components.

 Textbox – to let user enter a number

 Button – to show validation message

 Horizontal Arrangement – to hold button and textbox

 Label – to display validation message on screen

Start a New Project named ValidateNumber. The AI Designer will open. Set the
Screen1’s Title property to “ValidateNumber”. You may also fill in the AboutScreen
property to “App for Validating a Number” – this will be displayed when user clicks
on About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Horizontal Arrangement HA_EnterNumber (set Width property to Fill
parent) containing

– TextBox tb_EnterNumber (with Properties: BackgroundColor –
Yellow, Hint – Enter a number)

– Button btn_Validate (with Properties: BackgroundColor – Magenta,
FontBold, Text – Validate, TextColor – White, Width – Fill parent)

 Label lb_Display (with Properties: FontBold, FontItalic, FontSize - 18,
No Text, TextColor – Blue, Width – Fill parent)

Fig 5.2 displays the Designer - Viewer and Components.

Components

Designer

Fig 5.2 Designer - ValidateNumber

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 43

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag the to the workspace. Change name
to msg and set it to “Number is Invalid!”. Later we will change msg to
appropriate message.

 Right click on this block and select Add Comment. Click on and add a
comment in the box as shown in Fig 5.3.

Fig 5.3 Add Comment

 Locate the btn_Validate in the Blocks pane and drag the click event to
the workspace. Inside this add code block to do the following:

– Locate the Control drawer in the Blocks pane under the Built-in tab

and drag the to the workspace. This is where we do
the check if number is valid or not.

 Drag from the Math drawer in the
Blocks pane to fit into the if and change = to > to perform
the greater than operation on tb_EnterNumber.Text and
number 0.

 In the then part – set the variable msg to “Number is Valid!”

Blocks

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 44

– After msg has been set appropriately, set lb_Display.Text to msg
and reset msg back to “Number is Invalid!” for next click.

Fig 5.4 displays the Blocks with various comments.

AssignGrade App

Design and program an app which requests user to enter a score and then displays a
letter grade based on that score using the criteria shown. If the
score is greater than or equal to 90 then grade is “A”. Otherwise if
the score is between 80 and 90 then grade is “B” and so on. For a
score below 60 assign grade “F”.

This app demonstrates the use of nested if as well as logic blocks to test multiple
conditions for setting the appropriate letter grade. These nested if statements allow you
to control if a program enters a section of code (or not) based on the multiple
conditions. One of the important functions of the nested if statement is that it allows
the program to select an action based upon the user's input. For example, we will use
nested if statement to check whether the score is within a certain range. For this app,
we will use the following components.

 Textbox – to let user enter a score

 Button – to assign a letter grade

 Horizontal Arrangement – to hold button and textbox

 Label – to display the letter grade on screen

Score Grade

>= 90 A

>=80 and < 90 B

>=70 and < 80 C

>=60 and < 70 D

<60 F

Components

Fig 5.4 Blocks - ValidateNumber

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 45

Start a New Project named AssignGrade. The AI Designer will open. Set the
Screen1’s Title property to “AssignGrade”. You may also fill in the AboutScreen
property to “App for Assigning a Letter Grade based on a score.” – this will be
displayed when user clicks on About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Horizontal Arrangement HA_EnterNumber (set Width property to Fill
parent) containing

– TextBox tb_EnterNumber (with Properties: BackgroundColor –
Yellow, Hint – Enter score)

– Button btn_Grade (with Properties: BackgroundColor – Magenta,
FontBold, Text – Grade, TextColor – White, Width – Fill parent)

 Label lb_Display (with Properties: FontBold, FontItalic, FontSize - 18,
No Text, TextColor – Blue, Width – Fill parent)

Fig 5.5 displays the Designer - Viewer and Components.

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag the to the workspace. Change name
to score and set it to a number 0.

 Locate the btn_Grade in the Blocks pane and drag the click event to the
workspace. Inside this add code block to do the following:

Designer

Blocks

Fig 5.5 Designer - AssignGrade

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 46

– Set the global variable score to the value which the user entered in the
textbox tb_EnterNumber.Text

– Set lb_Display.Text to “Your Grade is “

– Locate the Control drawer in the Blocks pane under the Built-in tab

and drag to the workspace. Fig 5.6 shows the check
for assigning the letter grade as per the requirements. Fig 5.7 shows a
flow chart to help you understand the logic behind these blocks.

Fig 5.6 Blocks_AssignGrade

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 47

Fig 5.7 FlowChart - AssignGrade

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 48

Repetition With Loops

The statements inside the code blocks are generally executed step-by-step from top to
bottom. However, you may want to perform some actions repeatedly based on user
input or another criterion. You thus need the ability to perform repetitions in a loop
without repeating the code in your blocks. In order to avoid repeating endlessly you
will need to determine when to terminate the loop and stop the repetition.

The Control drawer in the Built-in tab in the Blocks pane of the Blocks Editor houses
a number of blocks which enable your app to perform repeatedly by programming
loops. Loop termination depends upon the results of a conditional test. The given
statements are only executed when the tested condition is true, otherwise the loop
terminates and these statements are skipped. This is easily achieved using the for each
block from the Built-in Control tab. The conditional test can be a simple test as in the
SumOfNumbers app below.

SumOfNumbers App

Design and program an app which requests user to enter a positive number n and
computes the sum of 1+2+3+…..+n where n is the number the user enters. This app
uses a for each block from the Built-in Control tab in the Blocks pane. The program
loops over the statements n times computing the cumulative sum.

The for each statement allows you to control how repetition is performed and
executes the statements in the do section for each numeric value in the range from
start to end, increasing the value for i by step each time. Usually the given variable
name i is used to refer to the current value. The loop is repeated n times with i starting
with 1 and ending with n. For this app, we will use the following components.

 Textbox – to let user enter a number

 Button – to show the cumulative sum

 Horizontal Arrangement – to hold button and textbox

 Label – to display sum of numbers from 1 to n on screen

Start a New Project named SumOfNumbers. The AI Designer will open. Set the
Screen1’s Title property to “SumOfNumbers”. You may also fill in the AboutScreen
property to “App for Summing numbers from 1 to N” – this will be displayed when
user clicks on About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

Components

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 49

 Horizontal Arrangement HA_EnterNumber (set Width property to Fill
parent) containing

– TextBox tb_EnterNumber (with Properties: BackgroundColor –
Yellow, Hint – Enter a number)

– Button btn_Sum (with Properties: BackgroundColor – Magenta,
FontBold, Text – Sum, TextColor – White, Width – Fill parent)

 Label lb_Display (with Properties: FontBold, FontItalic, FontSize - 18,
No Text, TextColor – Blue, Width – Fill parent)

Fig 5.8 displays the Designer - Viewer and Components.

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag two to the workspace. Change
name to num and set it to a number 0 for one and change the name to
sum and set it to 0.

 Locate the btn_Sum in the Blocks pane and drag the click event to the
workspace. Inside this add code block to do the following:

– Set the global variable num to the value which the user entered in the
textbox tb_EnterNumber.Text

– Set lb_Display.Text to 3 strings joined together “Sum of numbers

from 1 to ”, ,“ is ”

Designer

Blocks

Fig 5.8 Desgner_SumOfNumbers

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 50

– Locate the Control drawer in the Blocks pane under the Built-in tab

and drag to the workspace.
Change number to i. Leave the from value to 1 and set the to value to

. Leave the by value to 1. In the do part
write the code to perform the cumulative sum by adding i to the

 as shown in Fig 5.9.

Fig 5.9 Blocks - SumOfNumbers

Fig 5.10 shows a flow chart to help you understand the logic behind thefor each block.

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 51

Fig 5.10 FlowChart - SumOfNumbers

The next section demonstrates the use of a while loop instead of the for each to
perform the cumulative summation.

SumOfNumbers_While App

We re-design the SumOfNumbers app to use a while loop (instead of the for each)
block from the Built-in Control tab in the Blocks pane. Just like the previous app, this
loops over the statements n times computing the cumulative sum.

The while statement allows you to control how repetition is performed and executes
the statements in the do section while a test condition remains true. The while loop
ends when the test is false and the action given in the do section is no longer
performed. This while needs to be primed outside the loop by setting a variable which

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 52

is used to decide if loop should continue or end. For this app, we will use the same
components as the previous app.

 Textbox – to let user enter a number

 Button – to show the cumulative sum

 Horizontal Arrangement – to hold button and textbox

 Label – to display sum of numbers from 1 to n on screen

Start a New Project named SumOfNumbers_While. The AI Designer will open. Set
the Screen1’s Title property to “SumOfNumbers_While”. You may also fill in the
AboutScreen property to “App for Summing numbers from 1 to N using the While
Loop” – this will be displayed when user clicks on About this Application when your
app runs. (Instead of starting a new project, a faster way would be to save the previous
project as SumOfNumbers_While and make some changes to the blocks).

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Horizontal Arrangement HA_EnterNumber (set Width property to Fill
parent) containing

– TextBox tb_EnterNumber (with Properties: BackgroundColor –
Yellow, Hint – Enter a number)

– Button btn_Sum (with Properties: BackgroundColor – Magenta,
FontBold, Text – Sum, TextColor – White, Width – Fill parent)

 Label lb_Display (with Properties: FontBold, FontItalic, FontSize - 18,
No Text, TextColor – Blue, Width – Fill parent)

Fig 5.11 displays the Designer - Viewer and Components.

Components

Designer

Fig 5.11 Designer - SumOfNumbers_While

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 53

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag three to the workspace. Change
name to num and set it to a number 0 for one and change the name to
sum and set it to 0 just like in the previous app. For the third initialize
change the name to i and set it to 1. This variable i will be used to test the
while loop execution and is the “priming” value for the while loop. Also
note that this variable will need to be updated before looping back.

 Locate the btn_Sum in the Blocks pane and drag the click event to the
workspace. Inside this add code block to do the following:

– Set the global variable num to the value which the user entered in the
textbox tb_EnterNumber.Text

– Set lb_Display.Text to 3 strings joined together “Sum of numbers

from 1 to “, ,“ is “

– Locate the Control drawer in the Blocks pane under the Built-in tab

and drag to the workspace. In the test section add
code to check i <= the number entered by the user. The do section
has the code to do the cumulative sum and the increment of the
variable i as shown in Fig 5.12.

Think about what would happen if i is not incremented – the test would
always be true and loop will not end – which would result in an infinite
loop.

In this chapter we looked at the program structure, composition and
elements of apps and some ways to alter the flow of the program. We also
saw how to repeatedly execute some program statements using for each
and while statements. In the next chapter we will look into Lists and the
use of for each item in list code block.

Blocks

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 54

Fig 5.12 Blocks - SumOfNumbers_While

Review

 App is a self-contained program designed to fulfill a particular purpose.

 Programs can be complex but each instruction is generally quite simple; the device
starts at the beginning and works through, step-by-step, instruction by instruction,
until it gets to the end.

 User’s and programmer’s view apps differently.

 App is based on the event-driven programming paradigm, with events such as
sensor outputs, user actions (mouse clicks, key presses) etc.

 Event handlers are built-in functions which are programmable. The instructions
you want the app to execute (when the corresponding event happens) are right in
the event handler code block.

 The architecture of an app is composed of components, variables, behaviors and
procedures. App Inventor is based on the Object-Oriented Programming (OOP),
which uses abstraction (in the form of objects) to create models based on the real
world environment. OOP increases the flexibility and maintainability of programs.

 AI gives you the ability to control the flow of your program, to make decisions on
what code to execute next based on user input for example. The if statement
allows you to control if a program enters a section of code or not based on
whether a given condition is true or false. You can use nested if to test multiple
conditions.

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 55

 The for each and while statements give you the ability to perform repetitions in a
loop without repeating the code in your blocks. In order to avoid endless
repetition, you need to carefully determine when to terminate the loop and stop
the repetition.

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 5

 56

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

Chapter 6. Lists

“The list is the origin of culture. It's part of the history of art and
literature. What does culture want? To make infinity
comprehensible. It also wants to create order -- not always, but
often.”– Umberto Eco, an Italian writer and philosopher.

he previous chapter introduced you to the program structure, composition
and elements of apps and demonstrated ways to alter the flow of your
program. In this chapter we will focus on an important data structure – list,
which is very useful for storing a series of items or multiple values as opposed

to a single value in a variable. For example you may keep a list of high scores in a game
or a list of your friends in your Facebook app, etc.

Most programming languages use lists to create and manipulate different sets of values
and/or elements. A list is also known as an array in some programming languages. A
list can store data such as numbers (telephone numbers of your contacts in your
phone), text (answers for a Trivia app), or even colors (palette of colors for a Paint
app).

The Lists drawer (found in the Built-in tab in the Blocks pane of the Blocks Editor)
houses a number of list blocks which enable your app to create and manipulate lists.
There are two ways to create an empty list – use create empty list or use make a list
without any elements.

Other blocks such as is a list?, is in list?, and is list empty? provide functionality to
query lists and return boolean values (true or false) as result. Functions which return
integer values include length of list and position in list. List blocks also include
functions to add item to a list, remove item from a list, and select a particular or a
random item from a list. The function add items to list adds an item to the end of the
list, insert list item inserts an item into the list at a specified position. You can also add
items from a list to the end of another list using the append to list function. The Lists
drawer also includes functions to separate lists into a string of comma-separated values
(CSV) or create lists from CSV.

MoleMashList App

We now create a MoleMashList app which is similar to the Whac-a-Mole™ arcade
game where a mole randomly pops out of one of five fixed holes and the goal of the
game is to force the mole back into its hole by tapping it. The score is increased by one
point each time the mole is successfully tapped.

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Review

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 58

We will first create an empty list and then populate it with elements which represent
the 5 holes on the screen. The Clock component is used to control the mole’s
movement. We will use the Sprite Z-layering to ensure that the mole appears in front
of the hole. For this app, we will use the following components.

 ImageSprites– to represent a mole and 5 holes

 Canvas – a touch-sensitive surface to house the mole and holes

 Clock – to control the mole’s movement

 Labels– to display the game score

 Horizontal Arrangement – to hold the score label

Start a New Project named MoleMash_List. The AI Designer will open. Set the
Screen1’s Title property to “MoleMash_List.” You may also fill in the AboutScreen
property to “App for Whack-A-Mole arcade game using Lists” – this will be displayed
when user clicks on About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Canvas cnv_moleGame (set Width and Height property to 320 pixels)
containing 6 ImageSprites (5 holes in two rows and one mole below)

– is_hole1 (with Properties: X – 20, Y – 60, Z – 1)
– is_hole2 (with Properties: X – 130, Y – 60, Z – 1)
– is_hole3 (with Properties: X – 240, Y – 60, Z – 1)
– is_hole4 (with Properties: X – 75, Y – 140, Z – 1)
– is_hole5 (with Properties: X – 185, Y – 140, Z – 1)
– is_mole (with Properties: X – 140, Y – 220, Z – 2). Note: the mole

image sprite has its Z value set to 2 (higher than the Z value of the
hole image sprites).

 Horizontal Arrangement HA_EnterNumber containing 2 labels

– Label lb_ScoreTextLabel (with Properties: Text – Score:)
– Label lb_Score (with Properties: Text – 0)

 Sound snd_Buzzer from the Media tab of the Palette pane. Note that this
is a non-visible component.

 Clock clk_MoleClock from the Sensors tab of the Palette pane (with
Properties: TimerAlwaysFires – checked, TimerEnbaled– checked and

Components

Designer

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 59

TimerInterval – 1000). This non-visible component fires every 1000
milliseconds or every second.

 Upload two image files (hole.png and mole.png) in the Media pane.

Fig 6.1 displays the Designer - Viewer and Components

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag three to the workspace. Change

name to holes and set it to from the Lists drawer.
Now we have a empty list named holes. We will populate this list shortly.

Blocks

Fig 6.1 Designer - MoleMash_List

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 60

 Drag the from the Procedures drawer in the Blocks pane
under the Built-in tab to the workspace and change procedure to
moveMole. Inside this add code block to do the following:

– Drag from the Variables drawer and set a
local variable currentHole to a random item from the global holes list

using from the Lists drawer.

– Locate the imagesprite is_mole in the Blocks pane under Screen1-
cnv_moleGame and call MoveTo function and set the X and Y

components . This will
move the mole to the current hole (a randomly picked hole from the
holes list).

 Locate Screen1 in the Blocks pane and drag to
the workspace. This is where we will populate the holes list by using add
items to list as shown in the Blocks in Fig 6.2. We need to use the
appropriate hole components from the imagesprite is_hole in the Blocks

pane under Screen1 - cnv_moleGame. Next use to
set the picture property of the 5 hole imagesprites to hole.png (previously
uploaded in the Media pane of the AI designer). Finally add

 from the Procedures drawer (in the Blocks pane under
the Built-in tab) to move the mole to another hole.

 Locate the imagesprite is_mole in the Blocks pane under Screen1-

cnv_moleGame and call to do the following when
the mole is touched (as shown in Fig 6.2)

– update the score,
– make the buzzer vibrate, and

– move the mole to another hole by .

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 61

 Locate the Clock component clk_MoleClock in the Blocks pane under

Screen1 and drag event to the workspace and add

.

Trivia App

We now create a Trivia app for a Question/Answer game for a college campus.

We will first create three lists – questions list, answers list and pictures list. Then we
will build a Trivia game with Questions/Answers about various buildings/structures
on a college campus. For this app, we will use the following components.

 Upload six image files (we will have questions about these six structures) in
the Media pane

 Image – to display a picture related to the question

 Horizontal Arrangements – to hold the textual answer to the question
the user enters and the Submit and Next buttons for submitting the
answer or for the next question.

 Labels– to display the question, answer and correct/incorrect

Start a New Project named FDU_BuildingsTriviaGame. The AI Designer will
open. Set the Screen1’s Title property to “FDU Buildings Trivia Game.” You may also
fill in the AboutScreen property to “App for a Campus Trivia game using Lists” – this
will be displayed when user clicks on About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

Components

Fig 6.2 Blocks – MoleMash_List

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 62

 Image img_FDU (with Properties: Width – Fill parent, Height – 285
pixels, Picture: Mansion.png (initially we use one of the building pictures
which we uploaded in the Media pane, this will change later on in the
code).

 Label lb_QuestionLabel (with Properties: Text – Question:)

 Horizontal Arrangement HA_Answer containing

– Label lb_AnswerLabel (with Properties: Text – Answer:)
– TextBox tb_Answer (with Properties: Hint – Enter a Building Name,

with no text)

 Label lb_RightWrong (with Properties: Text – Correct/Incorrect)

 Horizontal Arrangement HA_SubmitNext containing 2 buttons

– Button btn_Submit (with Properties: Text – Submit)
– Button btn_Next (with Properties: Text – Next)

Fig 6.3 displays the Designer - Viewer and Components

Designer

Fig 6.3 Designer – Trivia

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 63

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag three to the workspace. Change

name to questionList and set it to from the Lists drawer.

Now populate this list with six different questions using and the
mutator to expand. Repeat the same with the answerList and the
pictureList as shown below in Fig 6.4.

 Locate Screen1 in the Blocks pane and drag
to the workspace. This is where we will pop the first question by
setting the text property of the lb_QuestionLabel to the selected first
question in the questionList as shown in Fig 6.5 below.

 Initialize a global currentQindex to 1 for the first question.

 Locate the btn_Submit in the Blocks pane and drag the click event to the
workspace. Inside this add code block to do the following:

– use the if-then block with else added with the mutator from the
Control drawer in the Blocks pane under the Built-in tab to check if
the answer entered in the tb_Answer matches the answer of the
current question. If it matches then set the properties of the
lb_RightWrong to: Text – Correct, Background Color – Blue, and
Text Color – White; otherwise set properties to: Text – Incorrect,
Background Color – Red, and Text Color – White.

Blocks

Fig 6.4 InitializeLists – Trivia

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 64

 Locate the btn_Next in the Blocks pane and drag the click event to the
workspace. Inside this add code block to do the following:

– Clear out the answer which was entered in tb_Answer by setting its

Text property to . Then set the properties of the
lb_RightWrong to: Text – Correct/Incorrect, Background Color –
White, and Text Color to Black; otherwise set properties to: Text –
Incorrect, Background Color – Red, and Text Color – White.

– If this is the last question in the list then reset the currentQindex to 0.

– Update the currentQindex and display the next question from the list
in lb_QuestionLabel with the appropriate picture by setting the
Picture property of the image component.

In this chapter we looked at how to create and populate Lists. We used pick a
random item, select list item with a particular index, and for each item in list to
maneuver through a list. We also used a clock component to move the mole at regular
intervals using a procedure to perform the movement. To ensure the mole appears in
front of the hole we used the Z-layering approach for visual effect. We saw how to
incorporate an image component to display different pictures by manipulating the
image properties.

Fig 6.5 Blocks – Trivia

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 65

Review

 Lists are used to create and manipulate different sets of values and/or elements.

 You can create empty lists in different ways.

 You can also query lists to get boolean results to find out if an item is in a list etc.

 Numerical values are returned when you ask for length of a list or position of an
existing item in the list

 AI provides functions to add items to the end of a list, insert a list item at a
specified position in a list, as well as append a list to another list.

 The clock fires timer events at regular intervals which can be used to trigger
movement for example.

 The Z-layering approach is used for visual effect to make an object appear in front
of another.

 AI provides functions such as for each item in list to maneuver through a list.

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 6

 66

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 7

Chapter 7. Text and Colors

“Colors, like features, follow the changes of the emotions.”– Pablo
Picasso, a Spanish painter and sculptor.

he previous chapter introduced you to an important data structure the List,
which makes infinity comprehensible and helps create order. In this chapter
we will focus on Text and Colors which constitute core elements of an app.

The Text and Colors blocks are available in the Built-in Blocks in the
Blocks Editor and may represent the names of players in a game app or
a palette of colors in a Paint app, etc. Most programming languages use
text in the form of strings. AI considers any characters (letters,

numbers, or other special characters) as a Text object and provides several functions
for performing various operations with such objects.

The Text drawer in the Blocks pane under the Built-in tab provides different blocks

for comparing, querying and manipulating strings. The checks if the string
contains any characters (including spaces) and returns a Boolean value true if the string
length is 0 and false otherwise. To determine the length of a string you can use the

 which gives the number of characters (including spaces) in the string. To

remove leading or trailing spaces you can use . You can also convert strings to

all uppercase or all lowercase using the and .

String Comparisons

Two strings can be compared lexicographically using

 and selecting the appropriate operation
from the drop down (= for equality, > for greater than, < for less

than). The character order is taken into account for comparison. Computers use the
American Standard Code for Information Interchange (ASCII, pronounced ask -ee) to
represent the different characters on the keyboard for example. Each character is
assigned a numerical value and comparison is based on these values. Upper case letters
occur before the lowercase ones and have lower values. ASCII codes for A-Z are 65-
90 contiguously and for a-z are 97-122. Thus, Apple<apple or apple>Apple would be
true.

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Workbook review

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 7

 68

Joining and Splitting Strings

 takes several inputs to make one single string. The mutator can be used to

increase the number of inputs. String can be split in many ways with .The
dropdown allows you to select different versions of split. The simplest one is split
which divides text into pieces using at as the dividing point and produces a list of
the result. Split at first divides the given text into two pieces using the location of
the first occurrence of at as the dividing point, and returns a two-item list
consisting of the piece before the dividing point and the piece after the dividing
point. For example, if our text is Anna, Bob, Carl, Doug then setting at to , (oour
dividing point) the result would be a list with two items - Anna and Bob, Carl,
Doug. There are other variations of split as well.

Extracting and Replacing Strings

AI also provides blocks for extracting and replacing segments in a string.

 is used to extract a substring from text starting at start position and

continuing for number of characters equal to length. results in a
new string which is derived from text with all occurrences of segment replaced
by replacement .

Many of the apps we create in the other chapters in this book use the Text blocks
so we don’t explain any apps in here.

Colors

The Colors drawer in the Built-in tab of the Blocks pane can be used to define

color in your app. You can make color or do the opposite to split color. is a
basic color block and has a color in the middle. Clicking on this displays a pop-up
with a table of 70 colors from which you can choose a new color that will change
the current color of your basic color block.

Make and Split Color

 takes several inputs and allows you to make color
using three numbers (between 0 and 255) for the Red (R), Green (G), and Blue
(B) components. You can generate a broad array of colors by changing the values

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 7

 69

of these 3 components. For example, the color White uses 255’s for the three
components and the color Black uses 0’s. The PaintPot_PickColorScreen app
we create in Chapter 8 uses this make color block.

In this chapter we looked at Text and Colors blocks which are essential elements of
apps. These blocks are used in the apps we create in the next chapter. The next chapter
focuses on Media and Animation and also explains persistent data storage.

Review

 Text and Colors blocks are available in the Built-in Blocks in the Blocks Editor.

 Text object can contain letters, numbers, or other special characters.

 AI provides functions for comparing, querying and manipulating strings.

 Color defines the colors in your app and you can either make or split colors.

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 7

 70

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

Chapter 8. Animation and Media

“Animation is not the art of drawings that move but the art of
movements that are drawn.”– Norman McLaren, a Scottish-born
Canadian animator and film director.

he previous chapter introduced you to Text and Colors which constitute core
elements of an app. In this chapter we will focus on Animation as a medium
of storytelling and visual entertainment. We will also look at Media and
Storage components since most mobile device apps utilize various media

resources for images, photos, sound and video as well data storage.

Animation

AI uses sprite (Ball and ImageSprite) components and Canvas for
creating animated, interactive, and lively apps. These are found in the
Designer palette’s Drawing and Animation tab. A Canvas is a two-
dimensional touch-sensitive rectangular panel on which users can

draw and sprites can move. Sprites (Ball and ImageSprite) need a Canvas for moving
and for different screen gestures such as dragging, touching, flinging, colliding etc.
ImagesSprite can take on any appearance from an image file, whereas Ball can only
be a round sprite.

Sprites have three important properties:

– Heading – indicates the angular degrees above the positive
x-axis with 0 degrees being towards the right, 90 to the top,
180 to the left and 270 to the bottom of the screen as shown
in Fig 8.1.

– Interval – in milliseconds indicates how often the sprites
position will be updated.

– Speed – indicates the number of pixels the sprite moves in every interval. For
example, if a sprite has speed 5 and an interval of 10 milliseconds, then it moves 5
pixels every 10 milliseconds.

Sprites generate events such as Dragged, Flung, Touched, CollidedWith,
EgdeReached and have methods to Bounce and MoveTo. The Canvas also has the
Dragged, Flung, Touched events and the DrawCircle, DrawLine, Clear and other
methods.

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Review

Fig 8.1 Heading degrees

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 72

Media

To make an app come alive, AI uses Camera, Camcorder, ImagePicker,
Player, Sound, SoundRecorder, etc. components, which are found in
the Designer palette’s Media tab. These are non-visible components
and generate events and have methods. For example, the Camera

component generates a AfterPicture event when the picture has been clicked and it
has a TakePicture method to enable the device’s camera to take a picture. All Android
media formats for audio (MP3), image (JPEG, PNG), and video (MPEG-4) are
supported.

TinyDB

AI uses TinyDB, a non-visible component, to store data for an app.
Apps are initialized each time they run so if an app sets the value of a
variable and the user then quits the app, the value of that variable will
not be remembered the next time the app is run. In contrast, TinyDB

is a persistent data store for the app. The data stored there will be available each time
the app is run. TinyDB is often used in a game app to save a high score. This high
score is retrieved each time the game is played.

Data items are stored under tags. To store a data item, you need to specify a tag it
should be stored under. Subsequently, to retrieve the stored data item you need to
specify the given tag. Each device has only a single data store and thus multiple
TinyDB components use the same data store. In order to get the effect of separate
stores, you need to use different tags.

Each app has its own data store and you cannot use TinyDB to pass data between two
different apps on the mobile device, although you can use it to share data between
different screens of a multi-screen app.

HungryMonkey App

We now create a HungryMonkey game app which uses animation and TinyDB
components described above.

In this app we use both the Ball and a Monkey ImageSprite and a Banana
ImageSprite on a Canvas. In this game the hungry monkey tries to capture a moving
banana with a stone. Each time the monkey hits the target, the game score is updated.
For this app, we will use the following components.

 Upload two image files (monkey and banana) and two mp3 sound files
(game over and target hit) in the Media pane

 ImageSprites– to represent monkey and banana

Components

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 73

 Ball – to represent the stone

 Canvas – a touch-sensitive surface to house the monkey, banana and
stone.

 Clock – one to control the banana movement and one to control the
game time

 Labels– to display the current game score and the high score on the
device

 Horizontal Arrangement – to hold the score labels

 TinyDB – to hold the high score

 Sound – for game over and high score reached sounds

Start a New Project named HungryMonkey. The AI Designer will open. Set the
Screen1’s Title property to “HungryMonkey” You may also fill in the AboutScreen
property to “Hungry Monkey Game” – this will be displayed when user clicks on
About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Canvas cnv_HungryMonkey (with Properties: Width – Fill Parent,
Height – 300 pixels) containing a Ball (stone) and 2 ImageSprites (monkey
and banana)

– bl_Stone (with Properties: Heading – 0, Interval – 100, PaintColor –
Green, radius – 8, Speed – 0.0, X – 180, Y – 120, Z – 1)

– is_banana (with Properties: Heading – 0, Interval – 100, Picture:
banana.png, Speed – 0.0, X – 170, Y –20, Z – 1))

– is_monkey (with Properties: Heading – 0, Interval – 100, Picture:
monkey.png, Speed – 0.0, X – 120, Y –150, Z – 1)

 Horizontal Arrangement HA_Scores containing 4 labels (set appropriate
background and text colors of your choice for these labels)

– Label lb_ScoreLabel (with Properties: Text – Your Score:)
– Label lb_Score (with Properties: Text – 0)
– Label lb_HighScoreLabel (with Properties: Text – High Score:)
– Label lb_HighScore (with Properties: Text – 0)

 Button btn_Reset (with Properties: BackgroundColor – Red, FontSize -
20, Text – Reset, TextColor – White)

Designer

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 74

 Label lb_GameOver (with no Text)

 Clock clk_MoveTarget from the Sensors tab of the Palette pane (with
Properties: TimerAlwaysFires – checked, TimerEnbaled– checked and
TimerInterval – 3000). This non-visible component fires every 3000
milliseconds or 3 seconds.

 Clock clk_GameOver from the Sensors tab of the Palette pane (with
Properties: TimerAlwaysFires – checked, TimerEnbaled– checked and
TimerInterval – 60000). This non-visible component fires every 60000
milliseconds (every minute).

 TinyDB TinyDB_HighScore, a non-visible component for persistent
data storage on device

 Sounds snd_GameOver and snd_HighScore from the Media tab of the
Palette pane. Note that these are non-visible component.

Fig 8.2 displays the Designer - Viewer and Components

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

Fig 8.2 Designer – Hungry Monkey

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 75

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag to workspace with name hsScore set to 0.

 Locate Screen1 in the Blocks pane and drag to
the workspace. Inside this add code block to do the following as shown in
Fig 8.3 below:

– Make bl_Stone (Property: Visible – False) invisible

– Get the value of High Score stored previously in the device
(persistent data) from TinyDB_HighScore using the GetValue
function (set tag to HS_tag, valueIfTagNotThere to 0) and set
global variable hsScore to this value

– Display current High Score on screen via lb_HighScore

 Locate imagesprite is_monkey in the Blocks pane under Screen1-
cnv_HungryMonkey and drag two events - Dragged and Touched to
workspace (as shown in Fig 8.4). When monkey is dragged you simply
move it in a horizontal direction by setting only its X component to
currentX. When it is touched, move the stone close to the monkey (with
the stone’s x and y properties set appropriately based on the width and
position of the monkey). Also make the stone Visible and set its Speed to
5 and Heading to 90 (top vertical direction).

Blocks

Fig 8.3 Initialize – HungryMonkey

Fig 8.4 Dragged and Touched – HungryMonkey

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 76

 Locate ball bl_Stone in the Blocks pane under Screen1-
cnv_HungryMonkey and drag two events - CollidedWith and
EdgeReached to workspace (as shown in Fig 8.5). When stone collides
(for example with the banana) make it invisible (as if monkey has eaten the
banana) and update user’s score by 1 point. Next we check to see if the
user’s current score is higher than the High Score already stored in the
device. If it is a new High Score then play the sound for achieving the new
High Score, update the persistent data with this new score using the
TinyDB StoreValue function (using the same tag we used earlier in the
GetValue function) and display this new High Score on screen via
lb_HighScore. Also, move the banana in the horizontal direction
randomly. For this we use the Math function random integer from and
set the limits from 0 to width of canvas – width of banana. When edge is
reached (top edge in this case) simply make the stone invisible.

 Locate the Clock components clk_MoveTarget and clk_GameOver in
the Blocks pane under Screen1 and drag their Timer events to the
workspace as shown in Fig 8.6 below. When the clk_MoveTarget Timer
fires simply move the banana in the horizontal direction randomly as
earlier. When the clk_GameOver Timer fires, play the Game Over sound,
display “Game Over” in lb_GameOver, make the banana and stone
invisible, disable the clk_MoveTarget Timer and the imagesprite
is_monkey so that the game cannot be played anymore, until the Reset
button is pressed (see the btn_Reset Click event in Fig 8.6).

Fig 8.5 CollidedWith and EdgeReached – HungryMonkey

Fig 8.6 Clock Timers and Reset Button – HungryMonkey

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 77

PaintPot_PickColorScreen App

We now create a PaintPot_PickColorScreen app to demonstrate how to work with
multiple screens in an app. We will use the Colors Block and the process to make
colors from the red, green, blue components we saw in Chapter 7.

AI has the ability to create apps with multiple screens, each having its own designer
and blocks editor. Having too many screens makes your app too expensive as it uses a
lot of computing resources. As a rule of thumb, try not to exceed ten screens in any
app. We will create this app with two screens. The first screen is the main Paint Pot
app (you may use Pink Background color for this screen to distinguish it from the
other screen) and the second screen is used for picking a color of the user’s choice. For
this app, we will use the following components.

 Upload two image files (kitty.png and palette.png) in the Media pane

 Two Screens – Screen1 and Pick_Color. Note that you cannot change the
name of Screen1. For the second screen be careful about the name you
pick since you cannot change it afterwards.

 Canvas to be used to paint something on the screen

 Buttons to wipe the screen clean and to pick color of choice for first
screen. Buttons for TestColor, resetColor and Done on the second screen.

Start a New Project named PaintPot_PickColorScreen. The AI Designer will open.
Set the Screen1’s Title property to “Paint Pot.” You may also fill in the AboutScreen
property to “Pick a color and paint the cat!” – this will be displayed when user clicks on
About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Canvas cnv_Kitty (with Properties: BackgroundImage – kitty.png, Width
– Fill Parent, Height – Automatic, PaintColor – Red)

 Two buttons btn_Wipe (with Properties: BackgroundColor – Magenta,
FontBold, FontSize – 20, Text – Wipe, Width – Fill Parent, Height –
Automatic) and btn_PickColor (with Properties: FontBold, FontSize –
16, Image – palette.png, Text – Pick A Color, TextColor – Blue, Width –
Automatic, Height – Automatic) as shown in Fig 8.7

Click Add Screen … to add the second screen – set name to Pick_Color. On the
second screen add the following components

Components

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 78

 Horizontal Arrangement HA_ColorCanvas containing a Vertical
Arrangement VA_RGB and a label lb_MakeYourOwnColor (with
Properties: BackgroundColor – LightGray, FontSize – 20, Text – about
25 blanks followed by the words Make Your Own Color,TextColor –
Blue, Width – Fill Parent, Height – Fill Parent). Inside the VA_RGB add
3 Horizontal Arrangements HA_Red, HA_Green and HA_Blue. Add a
label lb_RedLabel and Textbox tb_Red (with Properties: Hint – Enter 0-
255) to the HA_Red and repeat for HA_Green and HA_Blue as shown
in Fig 8.8

 Horizontal Arrangement HA_TestReset containing two buttons
btn_TestColor (with Properties: Text – Test Color, Width – Fill Parent,
Height – Automatic) and btn_ResetColor (with Properties: Text – Reset
Color, Width – Fill Parent, Height – Automatic) with a label
lb_ColorSample (with Properties: FontSize – 20, Text – about 25 blanks,
Width – 50 pixels, Height – Automatic) in between

 Button btn_Done (with Properties: Text – Done, Width – Automatic,
Height – Automatic)

Fig 8.7 and 8.8 display the Designer - Viewer and Components for Screen1
and Screen2 respectively.

Fig 8.7 Designer – Screen1 – PaintPot_PickColorScreen

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 79

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace screen by screen. Let us begin with the first
screen. The blocks for Screen1 are shown in Fig 8.9

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag to workspace with name currentColor set

to from the Colors drawer in the Blocks pane under the Built-in tab.

 Locate Screen1 in the Blocks pane and drag to

the workspace and set cnv_Kitty PaintColor to

 Locate canvas cnv_Kitty in the Blocks pane under Screen1 and drag two
events - Dragged and Touched to workspace. For both events the first
thing you do is set cnv_Kitty PaintColor to currentColor (this color will be
chosen on the second screen). For the Touched event draw a circle of
radius 5 at the point (x, y) where the canvas was touched and for the
Dragged draw a line from previous to current. Hover near the x and

Blocks

Fig 8.8 Designer – Screen2 – PaintPot_PickColorScreen

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 80

select get x and similarly for y, prevX, prevY,
currentX, currentY.

The next two steps are related to the two screens (we are still in the Blocks
Editor of Screen1)

 Locate the btn_PickColor in the Blocks pane under Screen1, drag the

click event to the workspace and add the
found in the Control drawer in the Blocks pane under the Built-in tab.
Make sure to provide the correct screen name for the second screen –
Pick_Color.

 Locate Screen1 in the Blocks pane and drag
to the workspace and set currentColor to the result (need to hover on
result and then drag get result) returned from the second screen as shown
in Fig 8.9.

Now, let us work on the second screen Pick_Color. The blocks for Screen2 are shown
in Fig 8.10

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag to workspace with name currentColor set

to from the Colors drawer in the Blocks pane under the Built-in tab.

Blocks
Screen2

Fig 8.9 Blocks – Screen1 – PaintPot_PickColorScreen

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 81

 Locate Pick_Color (name of the second screen) in the Blocks pane and
drag the initialize event to the workspace and set lb_ColorSample
BackgroundColor to currentColor.

 Locate the Procedures drawer in the Blocks pane under the Built-in tab

and drag two to the workspace and name the procedures
checkColor (with one input - colorInput) and limitRange (with three
inputs – input, low, high). Use the mutator to add required number of
inputs to the two procedures. The first procedure takes in colorInput and
calls the limitRange procedure with this colorInput and low of 0 and high
of 255 to make sure its value is between 0 and 255. Of course this same
work can easily be accomplished with a single procedure but we wanted to
show how easy it is to have one procedure call another and maybe the
limitRange procedure code could be reused elsewhere. the limitRange
procedure is a classic code for limiting a value between low and high. If the
colorInput exceeds 255 it will be clipped to 255 (the high value), and if the
colorInput is less than 0 then it will set to 0 (the low value). We will call the
checkColor procedure when we make the color as per the user-entered
red, green and blue components.

 Locate the btn_TestColor in the Blocks pane under Pick_Color, drag the
click event to the workspace and add the following code

– Use makeColor with a list of red, green, blue components (already
checked to be between 0 and 255) to set the currentColor.

– Set lb_ColorSample BackgroundColor to currentColor so that the
user can see a little swatch of the color.

– On the cnv_ColorCircleSample darw a circle of radius 10 at x=270
and y=35 so that the user can see this color in a larger sample.

 Locate the btn_ResetColor in the Blocks pane under Pick_Color, drag
the click event to the workspace and clear out Text in tb_Red and set the
Hint to Enter 0-255. Repeat for the other two textboxes.

 Locate the btn_Done in the Blocks pane under Pick_Color, drag the click

event to the workspace and to close the
second screen and pass the currentColor to the first screen. Note that this
result is used by Screen1 when the second screen is closed (refer to the
blocks for Screen1 event when other screen closed).

Fig 8.10 shows the blocks for the second screen Pick_Color.

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 82

PaintPot_Camera App

We now create a PaintPot_Camera app to demonstrate how to work with the camera
on your device. We will also use a Slider component - a progress bar that adds a
draggable thumb, which you can drag left or right to set the slider thumb position.

Camera is a non-visible component, found in the Media tab, takes a picture using the
device's camera. After the picture is taken, the AfterPicture event triggers and the
image can be used to set the background image of the canvas in our app. The Slider is
a visible component found in the UserInterface tab and as the Slider thumb is dragged,
it will trigger the PositionChanged event, reporting the position of the Slider thumb.
The reported position is used to dynamically update another component attribute, such
as the dotSize in this App. For this app, we will use the following components.

 Upload two image files (kitty.png and camera.png) in the Media pane

 Horizontal Arrangements – one to hold Red, Green and Blue buttons
for selecting a color and another to hold the TakePicture button and the
slider.

 Canvas to hold a picture (kitty.png or the one taken with the device’s
camera)

 Labels– to display the dot size

 Buttons to TakePicture and Wipe the canvas clean

Components

Fig 8.10 Blocks – Screen2 – PaintPot_PickColorScreen

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 83

 Camera component

Start a New Project named PaintPot_Camera. The AI Designer will open. Set the
Screen1’s Title property to “Paint Pot.” You may also fill in the AboutScreen
property to “Pick a color and paint the cat or click a picture to paint” – this will be
displayed when user clicks on About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Horizontal Arrangement HA_Buttons (with Property: Width– Fill Parent,
Height – Automatic) to hold 3 buttons btn_Red (with Property:
BackgroundColor – Red, Text – Red, TextColor – Yellow, Width – Fill
Parent, Height – Automatic), btn_Blue (with Property: BackgroundColor
– Blue, Text – Blue, TextColor – White, Width – Fill Parent, Height –
Automatic), btn_Green (with Property: BackgroundColor – Green,
TextColor – White, Text – Black, Width – Fill Parent, Height –
Automatic), as shown in Fig 8.11

 Canvas cnv_kitty (Property: BackgroundImage – kitty.png, Width – Fill
Parent, Height – 250 pixels)

 Button btn_Wipe (with Properties: Text – Wipe, Width – Fill Parent,
Height – Automatic)

 Horizontal Arrangement HA_Camera_Slider (with Property: Width– Fill
Parent, Height – Automatic),to hold a buttons btn_TakePicture (with
Property: Image – camera.png, Text – Click Picture), a label lb_DotSize
(Property: Text – Dot Size:) and a Slider Slider_Size(with Property:
ColorLeft – Blue, ColorRight – Gray, MaxValue – 20, MinValue – 2,
ThumbPosition – 5, Width – Fill Parent)

 Non-visible component Camera1 from the Media tab

Fig 8.11 displays the Designer - Viewer and Components

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the Variables drawer in the Blocks pane under the Built-in tab and

drag to workspace with name dotSize set to 5.

 Locate Screen1 in the Blocks pane and drag to

the workspace and set cnv_kitty PaintColor to

Designer

Blocks

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 84

 Locate the btn_Wipe in the Blocks pane under Screen1, drag the click
event to the workspace to clear the canvas.

 Locate the btn_Red in the Blocks pane under Screen1, drag the click

event to the workspace to set cnv_Kitty PaintColor to . Repeat for
btn_Green and btn_Blue.

 Locate canvas cnv_kitty in the Blocks pane under Screen1 and drag two
events - Dragged and Touched to workspace. For the Touched event
draw a circle of radius dotSize at the point (x, y) where the canvas was
touched and for the Dragged draw a line from previous to current.

Fig 8.11 Designer – PaintPot_Camera

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 85

 Locate the btn_TakePicture in the Blocks pane under Screen1, drag the

click event to the workspace to from the
Camera1 in the Blocks pane under Screen1 HA_Camera_Slider.

 For the Camera1 in the Blocks pane under Screen1 HA_Camera_Slider

drag the and set cnv_Kitty BackgroundImage to get
image.

 For the Slider Slider_Size in the Blocks pane under Screen1

HA_Camera_Slider drag the and set dotSize to
thumbPosition.

 Fig 8.12 shows the blocks for this app.

In this chapter we looked at how to use animation and media in our apps. TinyDB
allows us to use the device to store persistent data. Having the ability to use multiple
screens allows your app to look uncluttered. In the next chapter we will explore
Sensors.

Review

 AI uses Animation as a medium of storytelling and visual entertainment.

 Most mobile device apps utilize various media resources for images, photos, sound
and video as well data storage.

Fig 8.12 Blocks – PaintPot_Camera

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 86

 AI uses Ball, ImageSprite and Canvas for creating animated, interactive, and lively
apps.

 ImagesSprite can take on any appearance from an image file, whereas Ball can only
be a round sprite.

 Canvas is used for ball and image sprite movement. It is also used for different
screen gestures such as dragging, touching, flinging, colliding etc.

 AI provides Media components such as Camera, Camcorder, ImagePicker, Player,
Sound and SoundRecorder.

 TinyDB is a persistent data store for an app and is useful for retaining data
between runs of the app on a device.

 Multiple screens allow your app to look uncluttered and are easy to implement.

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 8

 87

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

Chapter 9. Sensors and

Connectivity

“The great art of life is sensation, to feel that we exist, even in
pain.”– Lord Byron, an English poet.

he previous chapter introduced you to Animation and Media which make an
app come alive. In this chapter we will focus on Sensor and Connectivity
components which are an integral part of most mobile devices.

Modern Android mobile devices are equipped with a range of built-in sensors which
can measure motion, orientation, and various environmental conditions. These sensors
(in the Sensors tab of the palette in the AI designer) provide data to monitor device
movement or position. For example, a game app may need to track user gestures and
motions such as tilt or shake, or a travel app might use the geomagnetic field sensor
and accelerometer to report a compass bearing.

AccelerometerSensor

AI uses Accelerometer sensor to detect shaking and measure
acceleration on the device. This non-visible component generates the
AccelerationChanged and Shaking events and has several properties
including:

- xAccel 0 when phone is at rest on a flat surface, positive when phone is tilted
to the right, negative if tilted to the left

- yAccel 0 when phone is at rest on a flat surface, positive when phone’s
bottom is raised, negative when phone’s top is raised

- zAccel 0 when device is perpendicular to the ground, negative 9.8 when the
device is at rest parallel to the ground with display facing up and positive 9.8
with display facing down - note that the earth's gravity is 9.8 m/s2 (meters per
second square).

BarcodeScannerSensor

AI provides a BarcodeScanner, a non-visible component, to read a
barcode. This component provides a DoScan method that uses the
device’s camera to read a barcode. When the scan is complete, this
method generates the AfterScan event which provides a text result.

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Review

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

 89

Clock

This is a non-visible component that provides the instant in time using
the devices’ internal clock. It fires a timer at regular intervals and
performs time calculations, manipulations, and conversions. When the
timer goes off it generates the Timer event. It has methods to

manipulate and format date and time. It has the following properties:

- TimerAlwaysFires when set to true, the timer will fire even when the app is
not showing on the screen

- TimerEnabled the timer will fire when set to true

- TimerInterval Interval in milliseconds (ms – thousandth of a second)
between timer events

LocationSensor

This non-visible component provides location information, such as
longitude, latitude, altitude (if supported by the device), and address.
This has methods to perform “geocoding” – converting an address to
latitude and longitude. When a new location for the device is detected,

a LocationChanged event is generated. This component has several properties
including: Altitude, CurrentAddress, Latitude and Longitude. The DistanceInterval and
TimeInterval properties specify the minimum distance (in meters) and the minimum
time (in miliseconds) the sensor will try to use for sending out location updates.

NearField

This non-visible component provides Near Field Communications
(NFC) capabilities (for example to transfer data between devices when
they are in proximity) and supports the reading and writing of text tags
(if supported by the device). In order to read and write text tags, the

component must have its ReadMode property set to True or False respectively. This
generates the TagRead event when a new tag is detected.

OrientationSensor

An orientation sensor is a non-visible component that determines a
device's spatial orientation and reports the roll, pitch and azimuth. This
component generates the OrientationChanged event and has several
properties including:

- Roll – roll angle of the device in degrees – 0 when the device is level,
increasing to 90 as the device is tilted up onto its left side, and decreasing to
−90 when the device is tilted up onto its right side.

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

 90

- Pitch – the pitch angle of the device in degrees – 0 when the device is level,
increasing to 90 as the device is tilted so its top is pointing down, then
decreasing to 0 as it gets turned over. Similarly, as the device is tilted so its
bottom points down, pitch decreases to −90, and then increases to 0 as it gets
turned all the way over.

- Azimuth – the azimuth angle of the device in degrees – 0 when the top of the
device is pointing north, 90 when it is pointing east, 180 when it is pointing
south, 270 when it is pointing west, etc.

Connectivity

Mobile devices are used for a variety of activities such as performing a

web search, connecting via Bluetooth (without wires) to peripheral
devices – speakers and headphones, surfing the web, starting apps such
as the camera app, etc. AI provides several components to do this. An

ActivityStarter is a non-visible component that can launch an activity using the
StartActivity method. For Bluetooth connectivity, AI provides the BluetoothClient and
BluetoothServer components. The Web component provides functions for web
requests.

LocationMap App

We now create a LocationMap app which uses some of the sensor and connectivity
components described above.

In this app the device can get its current location and display the latitude, longitude
and address and also the map of this location. The user can also enter any address to
view it on the map. For this app, we will use the following components.

 Labels– to display the current address, latitude, longitude, etc.

 Buttons – to get current location, display current location on map and
display entered address on map.

 TextBox – to enable user to enter any address

 Horizontal and Vertical Arrangements– to hold the buttons and labels

 LocationSensor – for location information - longitude, latitude, address

 TextToSpeech – to announce the location when it changes

 ActivityStarter – to start the map view activity

 Notifier – to display alert dialog when user tries to map a blank address

Components

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

 91

Start a New Project named LocationMap. The AI Designer will open. Set the
Screen1’s Title property to “LocationMap” You may also fill in the AboutScreen
property to “Location Sensor and Activity Starter App” – this will be displayed when
user clicks on About this Application when your app runs.

Using the AI Designer add the following components to Screen1 and change some of
the properties.

 Labels lb_Lat, lb_Long and lb_Addr (clear out Text)

 Horizontal Arrangement HA_Location_Map (with Properties: Width –
Fill parent, Height – Automatic) containing 2 buttons (set appropriate
background and text colors of your choice)

– Button btn_GetLocation (with Properties: Text – Get Location)
– Button btn_ShowLocationOnMap (with Properties: Text – Show

Location On Map)

 Label lb_WaitLabel (with Properties: Text – Please wait! Your location is
being determined, Visible – Hidden). Note that this label is initially hidden
and will be made visible in the code later.

 Vertical Arrangement VA_Address_Map (with Properties: Width – Fill
parent, Height – Automatic) containing label, textbox and button (set
appropriate background and text colors of your choice)

– Label lb_EnterAddress (with Properties: Text – Enter Address :)
– textbox tb_EnterAddres (with Properties: Hint – Enter Address here,

blank out the Text)
– Button btn_Map (with Properties: Text – Show Address On Map)

 Location Sensor LocationSensor1 (with Properties: TimeInterval –
60000). Note that this time interval represents a minute (60000 miliseconds
= 60 seocnds = 1minute)

 Text To Speech component TextToSpeech1 (with default properties)

 Activity Starter ActivityStarter1 (without any properties, we will fill the
properties in the code)

 Notifier Notifier1 (with default properties)

Fig 9.1 displays the Designer - Viewer and Components

Designer

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

 92

Click on Blocks in the upper right of the AI Designer and add the following code
blocks in the Blocks Editor workspace.

 Locate the btn_GetLocation under HA_Location_Map in the Blocks
pane under Screen1 tab and drag the click event to workspace. Enable
LocationSensor1 and make the lb_waitLabel visible as shown in Fig 9.2.

 For LocationSensor1 under the Screen1 tab in the Blocks pane drag the

to the workspace and set the latitude,
longitude and address labels to the values obtained from the Location
Sensor as shown in Fig. 9.2. Announce location has changed and the new

Blocks

Fig 9.1 Designer – Location Map

Fig 9.2 Get Location – Location Map

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

 93

address via TextToSpeech. Disable Location Sensor and hide wait label.

 Locate the btn_ShowLocationOnMap under HA_Location_Map in
the Blocks pane under Screen1 tab and drag the click event to workspace.
Locate ActivityStarter1 under Screen1 tab in the Blocks pane and drag

and to the
workspace as shown in Fig 9.3. This is where we specify the activity to
view the location address on a map. Repeat the same for the btn_Map
under VA_Address_Map in the Blocks pane under Screen1 tab. For this
we also add a check to see if the user has entered an address in the
TextBox tb_EnterAddress. If the textbox is empty then we notify the
user via a dialog using Notifier1.

In this chapter we looked at how to use sensor and connectivity components in our
apps. Other real-world apps can be easily made using the other sensors and
connectivity components we described in this chapter.

StockQuote App

We now create a StockQuote app which uses the Web component to look up a stock
price based on a stock symbol a user enters. Use the designer to create the user
interface which has a textbox (to input the stock symbol), a button (to get the stock
quote), a label (to display the stock price), and a Web component from the
Connectivity group. When the Get Quote button is pressed set the Web Uniform

Fig 9.3 Show on Map – Location Map

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

 94

Resource Locator (URL) to a service provider’s web service to request a quote – for
example use Yahoo finance https://finance.yahoo.com/quote/SIRI as a provider to
get a stock quote for the Sirius XM Holdings Inc. (stock symbol SIRI) and then
perform a get on the web component. When the response to the web request arrives, a
GotText event is raised on the Web component. In this event you can display the
responseContent in the label for a successful responseCode (200). Otherwise display an
error.

FindConcert App

Another fun app is the FindConcert App which uses the WebViewer component to
find a concert for a particular artist in a particular region. You specify a name of the
artist, the location (city or state for example) where/when you want to see their
performance, a year for example, etc. The app uses a webviewer component to view
concert dates and locations of the artist you searched for in your neighborhood. It uses
a search engine on songkick.com site with a query such as:
https://www.songkick.com/search?type=initial&query= with the artist name and
other details appended.

Review

 Sensor and Connectivity components are an integral part of most mobile devices.

 AI uses Accelerometer sensor to detect shaking and measure acceleration on a
mobile device.

 AI provides a BarcodeScanner component to read a barcode.

 Clock provides the instant in time using a devices’ internal clock.

 LocationSensor provides location information, such as longitude, latitude, and
address.

 AI provides OrientationSensor to determine a device's spatial orientation and
reports the roll, pitch and azimuth.

 A variety of activities such as performing a web search, connecting via Bluetooth
to peripheral devices - speakers, headphones, surfing the web, starting apps such as
the camera app are available in AI.

https://finance.yahoo.com/quote/SIRI
https://www.songkick.com/search?type=initial&query

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

 95

Chapter and Lab Summary

Please use the space below to summarize what you learnt in this chapter along
with a summary of the Labs relevant to this chapter.

Chapter Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 9

 96

Lab Summary

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 1 0

 97

Chapter 10. Packaging Apps

“There are only two mistakes one can make along the road to
truth; not going all the way, and not starting.” - Buddha, a sage who
founded Buddhism.

Every individual has his own style, his own way of presenting
himself on and off the field.” – Sachin Tendulkar, an Indian cricketer.

he previous chapters introduced you to develop apps for mobile devices using
the App Inventor. In this chapter you will see how to package and present
your apps.

After you create your app you may want to share it with others. Sharing can done in
different ways. One way to share your app is in the source code form. Another way is
the executable form. Distributing your app via the Google Play store is yet another
option.

Sharing the Source Code

In a classroom setting your instructors/teachers/graders etc. may want
you to share the source code of your app so that they can see your
design and blocks code. AI uses the project.aia file to share the source
code. These .aia files can only be opened or viewed in AI.

Open your app in AI and locate the Projects drop down on the top. From this, click
on the “Export selected project (.aia) to my computer” as shown in Fig 10.1. This
will download ProjectName.aia to your computer (check the Downloads folder).
You can also do the export from the Projects drop down - My Projects tab making

sure to check the project you want to export as shown in Fig 10.2. You cannot check

 multiple projects at the same time. You need to export one by one.

T I C O N K E Y

 Valuable information

 Keyboard exercise

 Review

Fig 10.1 Export aia from Projects drop down

Fig 10.2 Export aia from My projects

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 1 0

 98

In AI, to open a project.aia file that someone has shared with you, you can locate the
Projects drop down on the top and click on the “Import project (.aia) from my
computer” and choose the file. This will open

Sharing the Executable Form

You do not have to share the source code with others who simply want
to use your app and in that case you would share the executable form
of your app via the .apk file, which they can download and install on
their device.

Open your app in AI and locate the Build drop down on the top. Then click on “App
(save .apk to my computer)” as shown in Fig 10.3. This starts the build process and
you will see a progress bar in the pop-up alert box as shown in Fig 10.4.

Once the build completes you can share the .apk file by email or by uploading it to a
website from where people can download the .apk file onto their device. Anyone
installing your app (the .apk file) will need to change the setting on their device to
allow installation of non-market applications. You can find this setting under Settings
- Applications . Check the box next to "Unknown Sources". For some devices you
may find this under Settings - Security or Settings - Security & Screen Lock and
then check the box next to Unknown Sources and confirm your choice.

The other option on the Build drop down - App (provide QR code for .apk) -
generates a QR code for the .apk as shown in Fig 10.5. This code can be scanned by
anyone who needs to install your app on their device (using any QR code scanner on
their device). However, this code is only valid for 2 hours from the time it was
generated.

Fig 10.3 Build App

Fig 10.4 Build App – Progress Bar

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

C H A P T E R 1 0

 99

App Distribution via Google Play

AI apps can also be published via Google Play which requires a
registration fee. Publishing guidelines and details for developers are
found at Google Play. Before you generate the
.apk file, make sure your app has the

VersionCode and VersionName fields populated as in Fig
10.6. This can be done in the AI designer under the properties
panel for the Screen1 component.

VersionCode (an integer value, invisible to Google Play Store
users) defaults to 1 and should be increased by one with every
successive change whether it is a major change or a minor
change. VersionName (a String, can be anything) defaults to
1.0 and is increased by 1 for every major change and 0.1 for
every minor change. For example, an initial could be 1.0
which can be updated to 1.1 after a small change and 2.0 after a
larger change. You will need to increase the VersionCode and
change the VersionName of your application when you upload
a new version to the Play Store.

Review

 AI provides different ways to package and present your apps.

Fig 10.5 Build App – QR code

Fig 10.6 Screen – VersionCode and Name

B U I L D A N D R O I D A P P S W I T H A P P I N V E N T O R

I N D E X

 100

Index

A

About this Application 23
AboutScreen .. 23
AccelerometerSensor 13, 88
ActivityStarter .. 90
Address .. 89
AfterPicking ... 11, 12, 34
AfterPicture ... 72
AI coordinate system 30, 36
aiStarter ... 3
Altitude .. 89
Animation .. 71
Any component ... 21
Application software .. 2
Array .. 57
ASCII ... 67
Azimuth .. 90

B

Back End (AI Blocks Editor) 3, 4, 14, 21
Ball ... 13
BarcodeScanner 13, 88
Behavior ... 39
Blocks ... 17
Boolean .. 35, 36
Built-in ... 20
Button .. 7, 11

C

Camcorder ... 12
Camera ... 12
Canvas .. 13, 36
CheckBox .. 11, 32, 36
Clock .. 14
Colors ... 20
Comment ... 40, 43
Components .. 6, 39
Computers ... 1
Connectivity ... 90
Consumers ... 1
Control ... 20
Control Flow .. 41
Creators ... 1

D

DatePicker ..11

E

Emulator ...18
Event handler ...38
Event-driven programming paradigm38
External event ...39

F

For each ..48
Front End (AI Designer)........................... 3, 4, 14

G

Geocoding...89
Gmail account ...7

H

Hardware ..1
Heading ..71
Horizontal Arrangement12

I

Icon ...23
If-then ...41
Image ..11
ImagePicker ..12
ImageSprite ..13
Infinite loop ..53
Initialization event ..39
Interval ...71

J

Join ...27

L

Label ... 7, 11

 101

Latitude .. 89
List.. 20, 57
ListPicker ... 11, 32, 36
ListView .. 11
LocationSensor .. 14, 89
Logic ... 20
Longitude ... 89

M

Math .. 20
Media ... 6
Method .. 40
MIT AI2 Companion App 3
Mobile Devices .. 1
Multiple screens .. 77
Mutator ... 27, 36

N

Near Field Communications (NFC) 89
NearField ... 14
nested if ... 44
Notifier .. 11, 90, 91, 93

O

Object .. 40
Object-Oriented Programming (OOP) 40
Operating system 1, 2, 4
Operator .. 40
OrientationSensor 14, 89

P

Palette.. 6
Password TextBox .. 11
PasswordTextBox ... 36
Pitch ... 90
Pixels .. 71
Player ... 12
procedural (or functional) programming 40
Procedure .. 40
Procedures ... 20, 39
Properties .. 6
Property ... 40

R

Roll ... 89

S

Screen ... 11, 36
Sensors ...88
Share your app ...97
Slider ...11
Software ... 1, 2, 3, 4, 38
Sound .. 7, 12
SoundRecorder ...13
SpeechRecognizer ...13
Speed ..71
Spinner ...11
Sprite Z-layering ..58
Statement ...40
String comparisons ..67
Systems software ... 1, 4

T

Table Arrangement ...12
TakePicture ...72
Text ...20
TextBox ... 11, 36
TextToSpeech ...13
TimePicker ..11
Timer event ..39
TinyDB ..72
Title ...23

U

URL ...94
USB ...3
User initiated event ..39
User Interface (UI) ..6

V

Variable .. 39, 40
Variables ...20
Vertical Arrangement12
VideoPlayer ..13
Viewer .. 6, 17

W

WebViewer ...11
While ..51

Y

YandexTranslate ...13

