
## Lesson 1 | What is a System?



When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. A model can be used to analyze and describe inputs and outputs.

paper

Write this on your lab notebook

Using your sketch as a model...

- Label the components
- Label the <u>boundaries</u>
- Describe the <u>initial condition</u> of your setup (inputs, outputs, water level, etc.)
- Indicate what can be measured in your setup

#### Constructing a scientific argument

On your own, write a brief scientific argument (use claim-evidence-reasoning) to answer the following:

• Why is this setup considered a system?

#### Discuss with your lab partner

- What was your claim?
- What was your evidence?
- What was your reasoning?

## Using a model to predict

Models can be used for understanding and predicting the behavior of systems. Your sketch is a model of the actual system.

- Use your model to <u>predict</u> what will happen to your system when you remove the nail.
- Write your prediction in your science journal.

#### Part 2 Procedures

- To prevent spills, place your cup in a tray. It may be useful to prop your cup on a second inverted cup to make observations.
- Gently remove the nail.
- 3. Record your observations.
  - a. What happens to the system?
  - b. Does the system's behavior match your prediction?
- 4. Answer the following questions in your science journal.
  - a. How did the nail removal impact your input and outputs?
  - b. Are there any invisible components missing from your model?
- 5. Use a <u>different colored pen</u> to revise your sketch and improve your model.

# Write this on your lab notebook \_ paper



the Write this on your lab notebook paper

## Lab Challenge

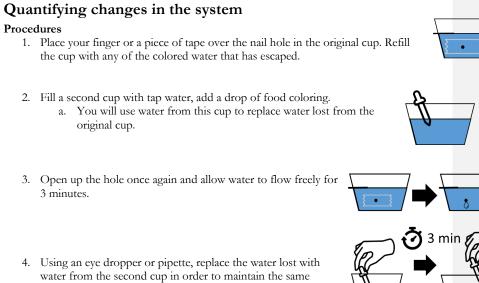
#### Manipulating components within the system

How can you manipulate your system to lower the water level to the nail hole?

- With your lab group, come up with as many ways to accomplish this task as possible.
- Whe n ready, present your ideas to your teacher.
- Your teacher will have you test one of your ideas.



#### Test your solution


- Sketch your proposed solution in your science journal and perform your experiment.
- Once all groups have conducted their tests, compare your ideas and results with other groups.

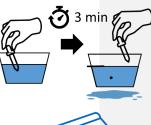
#### Discussion

Discuss the following in your lab group. Write a short summary in your science journal. In your experiment, you changed something about your system.

- Did the behavior of your system change?
- If so, how did the components interact to bring about a change in behavior of the system?
- Did the boundaries of your system change? If so, how?
- What was the output of your system?
- What was the input of your system?

Write this on your lab notebook paper




5. Record how many drops are returned to the original cup during the 3 minutes in your journal.

water level.

6. Using the data you collected, calculate the rate of water loss in drops per minute.









## Defining stability and change in the system -



# Write this on your lab notebook paper

- Equilibrium is a state of rest or balance due to equal action of inputs and outputs.
  Systems not in equilibrium are experiencing a state of imbalance between inputs and outputs. This imbalance results in unequal changes in the system.
- **Dynamic Equilibrium** is a state of balance when inputs and outputs are equally fluxing. In this case, a balanced system is the result of equal and opposite changes.

#### Applying knowledge of stability and change

Directions: In your science journal, label the following setups as: Equilibrium, Not in Equilibrium, and Dynamic Equilibrium

## Water Lost from System

#### Beginning system





### Maintaining Water Level



## **Comparing Inputs and Outputs**

#### Procedures

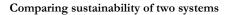
- 1. Fill a plastic cup half way with tap water, add a drop of food coloring, and snap the lid in place.
- 2. Fill a second plastic cup to the same level with **very hot water**, add a drop of a different food coloring, and snap the lid in place.

## **SAFETY NOTE**: Do NOT use boiling water.

#### Directions:

- 1. In your science journal, construct a Venn diagram to compare the two systems.
- 2. Write a scientific argument (using claim-evidence-reasoning structure) to answer the question:

Are both systems at equilibrium?


Write this on your lab notebook



### Increasing water loss from the system

#### Procedures

- Remove the water from your original cup and poke 4 holes at the same level as the first nail hole. Cover the holes with tape.
- 2. You will repeat the water loss experiment as done previously.
- 3. Remove the tape and allow water to flow freely for 3 minutes.
- 4. Using an eye dropper or pipette, try to replace the water lost with water from the second cup in order to maintain the same water level.
- 5. Record your answer to the following in your journal.
  - What happened to the water loss rate when more holes were added?
  - Were you able to maintain equilibrium?



Would you consider either system to be "sustainable"?



🏹 3 min

88888

#### Directions:

- 1. Write a scientific argument in your science journal using claim-evidence-reasoning structure to justify your answer. Be sure to include the scientific terms input, output, and equilibrium in your argument.
- 2. Write a proposed definition of "sustainability".