Updating search results...

Science

2386 affiliated resources

Search Resources

View
Selected filters:
6.1 Light & Matter
Unrestricted Use
CC BY
Rating
0.0 stars

How does a one-way mirror work? Though most everyone knows that one-way mirrors exist, having students model how they work turns out to be a very effective way to develop their thinking about how visible light travels and how we see images. Initial student models reveal a wide variety of ideas and explanations that motivate the unit investigations that help students figure out what is going on and lead them to a deeper understanding of the world around them.

As the first unit in the OpenSciEd program, during the course of this unit, students also develop the foundation for classroom norms for collaboration that will be important across the whole program.

Subject:
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Date Added:
02/18/2021
6.2 Thermal Energy
Unrestricted Use
CC BY
Rating
0.0 stars

This unit on thermal energy transfer begins with students testing whether a new plastic cup sold by a store keeps a drink colder for longer than the regular plastic cup that comes free with the drink.

Through a series of lab investigations and simulations, students find two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints.

Subject:
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Author:
OpenSciEd
Date Added:
08/02/2021
6.3 Weather, Climate & Water Cycling
Unrestricted Use
CC BY
Rating
0.0 stars

The goals of OpenSciEd are to ensure any science teacher, anywhere, can access and download freely available, high quality, locally adaptable full-course materials. REMOTE LEARNING GUIDE FOR THIS UNIT NOW AVAILABLE!

This unit on weather, climate, and water cycling is broken into four separate lesson sets. In the first two lesson sets, students explain small-scale storms. In the third and fourth lesson sets, students explain mesoscale weather systems and climate-level patterns of precipitation. Each of these two parts of the unit is grounded in a different anchoring phenomenon.

Subject:
Applied Science
Atmospheric Science
Environmental Science
Physical Science
Material Type:
Full Course
Lesson
Lesson Plan
Module
Teaching/Learning Strategy
Unit of Study
Provider:
OpenSciEd
Author:
OpenSciEd
Date Added:
08/18/2020
6.4 Plate Tectonics & Rock Cycling
Unrestricted Use
CC BY
Rating
0.0 stars

In this plate tectonics and rock cycling unit, students come to see that the Earth is much more active and alive than they have thought before. The unit launches with documentation of a 2015 Himalayan earthquake that shifted Mt. Everest suddenly to the southwest direction. Students read texts, explore earthquake and landform patterns using a data visualization tool, and study GPS data.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Applied Science
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
OpenSciEd
Date Added:
02/11/2022
6.5 Natural Hazards
Unrestricted Use
CC BY
Rating
0.0 stars

This unit begins with students experiencing, through text and video, a devastating natural event that caused major flooding in coastal towns of Japan. Through this anchoring phenomenon, students think about ways to detect tsunamis, warn people, and reduce damage from the wave. As students design solutions to solve this problem, they begin to wonder about the natural hazard itself: what causes it, where it happens, and how it causes damage.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Applied Science
Atmospheric Science
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
OpenSciEd
Date Added:
02/11/2022
6.6 Cells & Systems
Unrestricted Use
CC BY
Rating
0.0 stars

This unit launches with students hearing about an injury that happened to a middle school student that caused him to need stitches, pins, and a cast. They analyze doctor reports and develop an initial model for what is going on in our body when it heals. Students investigate what the different parts of our body are made of, from the macro scale to the micro scale. They figure out parts of our body are made of cells and that these cells work together for our body to function.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Life Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
OpenSciEd
Date Added:
02/11/2022
7.3 Metabolic Reactions
Unrestricted Use
CC BY
Rating
0.0 stars

Unit Summary
This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor. Her symptoms included an inability to concentrate, headaches, stomach issues when she eats, and a lack of energy for everyday activities and sports that she used to play regularly. She also reported noticeable weight loss over the past few months, in spite of consuming what appeared to be a healthy diet. Her case sparks questions and ideas for investigations around trying to figure out which pathways and processes in M’Kenna’s body might be functioning differently than a healthy system and why. 
Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people. Through this work of figuring out what is causing M’Kenna’s symptoms, the class discovers what happens to the food we eat after it enters our bodies and how M’Kenna’s different symptoms are connected.
This unit builds towards the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-LS1-3, MS-LS1-5, MS-LS1-7, MS-PS1-1, MS-PS1-2. The OpenSciEd units are designed for hands-on learning, and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.
Additional Unit InformationNext Generation Science Standards Addressed in this UnitPerformance ExpectationsThis unit builds toward the following NGSS Performance Expectations (PEs):

Subject:
Physical Science
Material Type:
Activity/Lab
Lesson
Module
Provider:
OpenSciEd
Date Added:
09/10/2019
7.3 Metabolic Reactions
Unrestricted Use
CC BY
Rating
0.0 stars

This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor.

Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people.

Subject:
Life Science
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Author:
OpenSciEd
Date Added:
08/02/2021
7.4 Matter Cycling & Photosynthesis
Unrestricted Use
CC BY
Rating
0.0 stars

Students figure out that they can trace all food back to plants, including processed and synthetic food. They obtain and communicate information to explain how matter gets from living things that have died back into the system through processes done by decomposers. Students finally explain that the pieces of their food are constantly recycled between living and nonliving parts of a system.

Subject:
Life Science
Physical Science
Material Type:
Lesson
Lesson Plan
Module
Teaching/Learning Strategy
Unit of Study
Provider:
OpenSciEd
Author:
OpenSciEd
Date Added:
09/16/2020
7.5 Ecosystem Dynamics
Unrestricted Use
CC BY
Rating
0.0 stars

How does changing an ecosystem affect what lives there? This unit on ecosystem dynamics and biodiversity begins with students reading headlines that claim that the future of orangutans is in peril and that the purchasing of chocolate may be the cause. Students then examine the ingredients in popular chocolate candies and learn that one of these ingredients--palm oil--is grown on farms near the rainforest where orangutans live. This prompts students to develop initial models to explain how buying candy could impact orangutans.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Engineering
Environmental Studies
Life Science
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
OpenSciEd
Date Added:
02/11/2022
8.1 Contact Forces
Unrestricted Use
CC BY
Rating
0.0 stars

Oh, no! I’ve dropped my phone! Most of us have experienced the panic of watching our phones slip out of our hands and fall to the floor. We’ve experienced the relief of picking up an undamaged phone and the frustration of the shattered screen. This common experience anchors learning in the Contact Forces unit as students explore a variety of phenomena to figure out, “Why do things sometimes get damaged when they hit each other?”

Student questions about the factors that result in a shattered cell phone screen lead them to investigate what is really happening to any object during a collision. They make their thinking visible with free-body diagrams, mathematical models, and system models to explain the effects of relative forces, mass, speed, and energy in collisions. Students then use what they have learned about collisions to engineer something that will protect a fragile object from damage in a collision. They investigate which materials to use, gather design input from stakeholders to refine the criteria and constraints, develop micro and macro models of how their solution is working, and optimize their solution based on data from investigations. Finally, students apply what they have learned from the investigation and design to a related design problem.

Subject:
Applied Science
Physical Science
Material Type:
Activity/Lab
Lesson
Lesson Plan
Module
Unit of Study
Provider:
OpenSciEd
Date Added:
10/21/2020
8.2 Sound Waves
Unrestricted Use
CC BY
Rating
0.0 stars

In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music.

Subject:
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Author:
OpenSciEd
Date Added:
08/02/2021
8.3 Forces at a Distance
Unrestricted Use
CC BY
Rating
0.0 stars

This unit launches with a slow-motion video of a speaker as it plays music. Students dissect speakers to explore the inner workings, and engineer homemade cup speakers to manipulate the parts of the speaker. They identify that most speakers have the same parts–a magnet, a coil of wire, and a membrane. Students investigate each of these parts to figure out how they work together in the speaker system.

Subject:
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Author:
OpenSciEd
Date Added:
08/02/2021
8.4 Earth in Space
Unrestricted Use
CC BY
Rating
0.0 stars

How are we connected to the patterns we see in the sky and space? Students develop models for the Earth-Sun and Earth-Sun-Moon systems that explain some of the patterns in the sky that they have identified, including seasons, eclipses, and lunar phases. They investigate a series of related phenomena motivated by their questions and ideas for investigations.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Applied Science
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
OpenSciEd
Date Added:
02/11/2022
8.5 Genetics
Unrestricted Use
CC BY
Rating
0.0 stars

Why are living things different from one another? This unit on genetics starts out with students noticing and wondering about photos of two cattle, one of whom has significantly more muscle than the other. Students figure out how muscles typically develop as a result of environmental factors such as exercise and diet. Then, they work with cattle pedigrees, including data about chromosomes and proteins, to figure out genetic factors that influence the heavily muscled phenotype and explore selective breeding in cattle.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Life Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
OpenSciEd
Date Added:
02/11/2022
AM I on the Radio?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups create working radios by soldering circuit components supplied from AM radio kits. By carrying out this activity in conjunction with its associated lesson concerning circuits and how AM radios work, students are able to identify each circuit component they are soldering, as well as how their placement causes the radio to work. Besides reinforcing lesson concepts, students also learn how to solder, which is an activity that many engineers perform regularly giving students a chance to be able to engage in a real-life engineering activity.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandon Jones
Emily Spataro
Lara Oliver
Lisa Burton
Date Added:
09/18/2014
Above-Ground Storage Tank Design Project
Read the Fine Print
Educational Use
Rating
0.0 stars

At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Above-Ground Storage Tanks in the Houston Ship Channel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are provided with an introduction to above-ground storage tanks, specifically how and why they are used in the Houston Ship Channel. The introduction includes many photographic examples of petrochemical tank failures during major storms and describes the consequences in environmental pollution and costs to disrupted businesses and lives, as well as the lack of safety codes and provisions to better secure the tanks in coastal regions regularly visited by hurricanes. Students learn how the concepts of Archimedes' principle and Pascal's law act out in the form of the uplifting and buckling seen in the damaged and destroyed tanks, which sets the stage for the real-world engineering challenge presented in the associated activity to design new and/or improved storage tanks that can survive storm conditions.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Abrupt Events of the Past 70 Million Years â Evidence from Scientific Ocean Drilling
Read the Fine Print
Rating
0.0 stars

In this 6-part activity, students learn about climate change during the Cenozoic and the abrupt changes at the Cretaceous/Paleogene boundary (65.5 million years ago), the Eocene/Oligocene boundary (33.9 million years ago), and the Paleocene/Eocene boundary (55.8 million years ago).

Subject:
Applied Science
Archaeology
Career and Technical Education
Environmental Science
Environmental Studies
Physical Geography
Physical Science
Social Science
Material Type:
Activity/Lab
Full Course
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Consortium for Ocean Leadership
Debbie Thomas
Mark Leckie
Date Added:
09/24/2018