Updating search results...

High School Science

13 affiliated resources

Search Resources

View
Selected filters:
All Things Being Equal
Read the Fine Print
Rating
0.0 stars

This set of a teacher and student guides provides instruction on a 2-3 day series of activities about Le Chatelier’s principle, which shows the effect of changes to conditions in an equilibrium reaction. Students work in pairs or groups to develop their concepts of equilibrium and the effects of changing the amount of reactants or products on an equilibrium system. The concepts are presented and analyzed using graphical representations, qualitative lab data, and modelling. The first part addresses the misconception that equal amounts are required for equilibrium through using a mini-activity that involves the transfer of water between beakers. The second part is a lab activity where students will see how an equilibrium system reacts to a change in concentration. The third part uses manipulatives to understand how an equilibrium operates using the mathematical equilibrium constant (Ksp) at the particulate view.

Subject:
Chemistry
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
DNA to Protein
Read the Fine Print
Rating
5.0 stars

This online interactive module of 10 pages or frames integrates textual information, 3D molecular models, interactive molecular simulations, and embedded assessment items to guide students in understanding the copying of DNA base sequences from translation to transcription into proteins within each cell. The module divides the exercises in to Day 1 and Day 2 time frames. Teachers can view student assessment responses by assigning the module within a class created within the Molecular Workbench application. This Java-based module must be downloaded to each computer.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
Evaporation of Alcohols
Read the Fine Print
Rating
0.0 stars

In this lab activity, students use a digital temperature probe to compare the temperature changes when four different alcohols evaporate. The analysis questions provided guide students to connecting the energy changes associated with the change of state with the structure of molecules of substances. Before beginning the lab, students are asked to consider the structural formulas of the alcohols used in the lab: methanol, ethanol, 1-propanol, and 1-butanol. After collecting data for the first three alcohols, students predict the temperature change for 1-butanol and then collect data to test their prediction. The resource linked here is a sample. More complete information, including teacher’s guide and safety information, is available for purchase from Vernier Software and Technology using the link provided on the final page of the sample.

Subject:
Physics
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
Fusion Reactions: How and Where are Elements Created?
Read the Fine Print
Rating
0.0 stars

Part 1 of the X-ray Spectroscopy Unit from NASA’s Imagine the Universe! lesson plans includes a series of three lessons on the formation of elements in stars. During this three lesson series, students learn about the life cycle of stars and model the formation of elements in stars. The lessons are a demonstration of type so fusion reactions and modeling not just the changes to matter during the processes but also the energy involved in these reactions.

Subject:
Physics
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Allie Hajian, NASA/GSFC
Angela Page, Hyatsville Elementary School
Rick Fowler, Crossland High School
Date Added:
10/12/2015
Graphing the Periodic Table
Read the Fine Print
Rating
0.0 stars

This activity provides students the opportunity to explore patterns in the periodic table. Students have options to display graphs of elements according to their atomic numbers and properties including: molar mass, atomic radius, ionic radius, melting point, boiling point, electronegativity, and ionization energies. Supplement Materials provided with the resource include a background essay and discussion questions. Discussion questions provided for the teacher encourage students to compare the properties of the elements and identify patterns in the properties within element families as well as across periods.

Subject:
Chemistry
Material Type:
Interactive
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
Masses & Springs
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation provides a realistic virtual mass-and-spring laboratory. Users can explore spring motion by manipulating stiffness of the spring and mass of the hanging weight. Concepts of Hooke's Law and elastic potential energy are further clarified through charts showing kinetic, potential, and thermal energy for each spring. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments in which students learn through exploration. All of the sims are freely available from the PhET website for incorporation into classes.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Date Added:
07/29/2008
Math Literacy in a Global Context, Revised for Lane Community College
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Course description: This course provides algebra, quantitative reasoning, and problem solving skills needed in Math 105, 106, 107, and in other college courses in programs not requiring calculus.

Subject:
Mathematics
Material Type:
Textbook
Provider:
Lane County STEM Hub
Author:
Paula Thonney
Date Added:
03/03/2019
Ocean Currents and Sea Surface Temperature
Read the Fine Print
Rating
0.0 stars

This interactive tool allows students to gather data using My NASA Data microsets to investigate how differential heating of Earth results in circulation patterns in the oceans and the atmosphere that globally distribute the heat. They examine the relationship between the rotation of Earth and the circular motions of ocean currents and air. Students also make predictions based on the data to concerns about global climate change. They begin by examining the temperature of ocean’s surface currents and ocean surface winds. These currents, driven by the wind, mark the movement of surface heating as monitored by satellites. Students explore the link between 1) ocean temperatures and currents, 2) uneven heating and rotation of Earth, 3) resulting climate and weather patterns, and 4) projected impacts of climate change (global warming). Using the Live Access Server, students can select data sets for various elements for different regions of the globe, at different times of the year, and for multiple years. The information is provided in maps or graphs which can be saved for future reference. Some of the data sets accessed for this lesson include Sea Surface Temperature, Cloud Coverage, and Sea Level Height for this lesson. The lesson provides directions for accessing the data as well as questions to guide discussion and learning. The estimated time for completing the activity is 50 minutes. Inclusion of the Extension activities could broaden the scope of the lesson to several days in length. Links to informative maps and text such as the deep ocean conveyor belt, upwelling, and coastal fog as needed to answer questions in the extension activities are included.

Subject:
Atmospheric Science
Material Type:
Lecture
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
Pedigrees and the Inheritance of Lactose Intolerance
Read the Fine Print
Rating
0.0 stars

In this activity students analyze a family’s pedigrees to make a claim based on evidence about mode of inheritance of a lactose intolerance trait, determine the most likely inheritance pattern of a trait, and analyze variations in DNA to make a claim about which variants are associated with specific traits. This activity serves as a supplement to the film Got Lactose? The Co-evolution of Genes and Culture (http://www.hhmi.org/biointeractive/making-fittest-got-lactase-co-evolution-genes-and-culture). The film shows a scientist as he tracks down the genetic changes associated with the ability to digest lactose as adults. A detailed teacher’s guide that includes curriculum connections, teaching tips, time requirements, answer key and a student guide can be downloaded at http://www.hhmi.org/biointeractive/pedigrees-and-inheritance-lactose-intolerance. Six supporting resource and two “click and learn” activities are also found on the link.

Subject:
Health, Medicine and Nursing
Biology
Genetics
Material Type:
Lesson Plan
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
Population Explosion
Read the Fine Print
Rating
0.0 stars

Population Explosion is a computer simulation which allows students to manipulate factors to see what happens over time to a population of sheep within an enclosed field. As the simulation runs, a graph shows the dynamic relationship between the sheep population size and their primary food resource, grass. Students can control factors such as initial number of sheep, grass regrowth rate, gain from food, and birthrate. Predation is represented by a “reaper” button which may also be controlled. The speed of the simulation can be set so that students can see more clearly what happens over time, or collect data more quickly, depending on how fast the simulation runs. Directions and a suggested simulation sequence are provided along with prompts so that students can pause and consider their results. A space within the simulation is provided for students to record observations and answers to the prompts. For each step in this suggested sequence, students take a snapshot of graphs they have created and store them in an album. At the end of the activity analysis questions help students connect the activity to wild populations. An optional extension exercise is also suggested.

Subject:
Biology
Ecology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
SlinkySeismometer_geoPhysics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This unit uses the slinky seismometer as a means of studying physics concepts such as waves, sound and the speed of sound vs speed of light, resonance, electricity and magnetism, Lenz Law and magnetic dampening (backwards engineering). Students experiment with the basic parts of the seismometer and either build or connect the seismometer to the internet to take and upload data.

Subject:
Engineering
Environmental Studies
Measurement and Data
Physical Science
Geology
Physics
Material Type:
Activity/Lab
Lesson Plan
Reading
Student Guide
Unit of Study
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Dean Livelybrooks
Joe Emery
Lisa Livelybrooks
Date Added:
05/07/2018
What do we already know, or think we know, about climate & Antarctica?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this lesson, students will first participate in a chalk talk to elicit initial ideas about climate and Antarctica and the types of data scientists collect. Next, they will explore images of Antarctica and make initial noticings and wonderings about what they’re seeing. Students will be introduced to important vocabulary through matching terms to components or features of a satellite image. Finally, students will synthesize their initial ideas about how satellite imagery can help us understand climate change in Antarctica. This is the first lesson of a five-part curriculum about Antarctic physical environments and ecosystems.

Subject:
Atmospheric Science
Material Type:
Lesson
Provider:
University of Colorado Boulder
Provider Set:
Cooperative Institute for Research in Environmental Sciences (CIRES)
Date Added:
12/01/2020