Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Standard: Solve real-world and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)

Degree of Alignment:
Not Rated
(0 users)

Cluster: Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Standard: Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations as strategies to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

Degree of Alignment:
Not Rated
(0 users)

Cluster: Analyze proportional relationships and use them to solve real-world and mathematical problems

Standard: Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction (1/2)/(1/4) miles per hour, equivalently 2 miles per hour.

Degree of Alignment:
Not Rated
(0 users)

Cluster: Understand ratio concepts and use ratio reasoning to solve problems

Standard: Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Expressions and Equations

Standard: Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Indicator: Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations as strategies to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Ratios and Proportional Relationships

Standard: Analyze proportional relationships and use them to solve real-world and mathematical problems

Indicator: Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction (1/2)/(1/4) miles per hour, equivalently 2 miles per hour.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: The Number System

Standard: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Indicator: Solve real-world and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Ratios and Proportional Relationships

Standard: Understand ratio concepts and use ratio reasoning to solve problems

Indicator: Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Ratios and Proportional Relationships

Standard: Analyze proportional relationships and use them to solve real-world and mathematical problems.

Indicator: Compute unit rates, including those involving complex fractions, with like or different units.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Ratios and Proportional Relationships

Standard: Understand ratio concepts and use ratio reasoning to solve problems.

Indicator: Use ratio and rate reasoning to solve real-world and mathematical problems.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Ratios and Proportional Relationships

Standard: 1 Understand ratio concepts and use ratio reasoning to solve problems

Indicator: Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: The Number System

Standard: 1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Indicator: Solve real-world and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Ratios and Proportional Relationships

Standard: 1 Analyze proportional relationships and use them to solve real-world and mathematical problems

Indicator: Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction (1/2)/(1/4) miles per hour, equivalently 2 miles per hour.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: Expressions and Equations

Standard: 2 Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Indicator: Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations as strategies to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

Degree of Alignment:
Not Rated
(0 users)

## Comments