Subject:
Applied Science, Life Science, Biology
Material Type:
Module
Level:
Community College / Lower Division, College / Upper Division
Provider:
Rice University
Provider Set:
OpenStax College
Tags:
  • Anthozoa
  • Cnidaria
  • Cnidarian
  • Cnidocyte
  • Coelenteron
  • Cubozoa
  • Hydrozoa
  • Invertebrata
  • Invertebrate
  • Medusa
  • Mesoglea
  • Nematocyst
  • Phylum Cnidaria
  • Polyp
  • Scyphozoa
  • License:
    Creative Commons Attribution Non-Commercial
    Language:
    English

    Phylum Cnidaria

    Phylum Cnidaria

    Overview

    By the end of this section, you will be able to:

    • Compare structural and organization characteristics of Porifera and Cnidaria
    • Describe the progressive development of tissues and their relevance to animal complexity

    Phylum Cnidaria includes animals that show radial or biradial symmetry and are diploblastic, that is, they develop from two embryonic layers. Nearly all (about 99 percent) cnidarians are marine species.

    Cnidarians contain specialized cells known as cnidocytes (“stinging cells”) containing organelles called nematocysts (stingers). These cells are present around the mouth and tentacles, and serve to immobilize prey with toxins contained within the cells. Nematocysts contain coiled threads that may bear barbs. The outer wall of the cell has hairlike projections called cnidocils, which are sensitive to touch. When touched, the cells are known to fire coiled threads that can either penetrate the flesh of the prey or predators of cnidarians (see Figure) or ensnare it. These coiled threads release toxins into the target and can often immobilize prey or scare away predators.

    The illustration shows a nematocyst before (a) and after (b) firing. The nematocyst is a large, oval organelle inside a rectangular cnidocyte cell. The nematocyst is flush with the plasma membrane, and a touch-sensitive hairlike projection extends from the nematocyst to the cell’s exterior. Inside the nematocyst, a thread is coiled around an inverted barb. Upon firing, a lid on the nematocyst opens. The barb pops out of the cell and the thread uncoils.
    Animals from the phylum Cnidaria have stinging cells called cnidocytes. Cnidocytes contain large organelles called (a) nematocysts that store a coiled thread and barb. When hairlike projections on the cell surface are touched, (b) the thread, barb, and a toxin are fired from the organelle.

    Link to Learning

    QR Code representing a URL

    View this video animation showing two anemones engaged in a battle.

    Class Anthozoa

    The class Anthozoa includes all cnidarians that exhibit a polyp body plan only; in other words, there is no medusa stage within their life cycle. Examples include sea anemones (Figure), sea pens, and corals, with an estimated number of 6,100 described species. Sea anemones are usually brightly colored and can attain a size of 1.8 to 10 cm in diameter. These animals are usually cylindrical in shape and are attached to a substrate. A mouth opening is surrounded by tentacles bearing cnidocytes.

    Part a shows a photo of a sea anemone with a pink, oval body surrounded by thick, waving tentacles. Part b shows a cross-section of a sea anemone, which has a tube-shaped body with an opening called a gastrovascular cavity at its center. Ribbon-like septa divide this cavity into segments. A mesogleal layer separates the inner surface of the anemone from the outer surface. A mouth is located at the top of the gastrovascular cavity. Tentacles that contain stinging cnidocytes surround the mouth.
    The sea anemone is shown (a) photographed and (b) in a diagram illustrating its morphology. (credit a: modification of work by "Dancing With Ghosts"/Flickr; credit b: modification of work by NOAA)

    The mouth of a sea anemone is surrounded by tentacles that bear cnidocytes. The slit-like mouth opening and pharynx are lined by a groove called a siphonophore. The pharynx is the muscular part of the digestive system that serves to ingest as well as egest food, and may extend for up to two-thirds the length of the body before opening into the gastrovascular cavity. This cavity is divided into several chambers by longitudinal septa called mesenteries. Each mesentery consists of one ectodermal and one endodermal cell layer with the mesoglea sandwiched in between. Mesenteries do not divide the gastrovascular cavity completely, and the smaller cavities coalesce at the pharyngeal opening. The adaptive benefit of the mesenteries appears to be an increase in surface area for absorption of nutrients and gas exchange.

    Sea anemones feed on small fish and shrimp, usually by immobilizing their prey using the cnidocytes. Some sea anemones establish a mutualistic relationship with hermit crabs by attaching to the crab’s shell. In this relationship, the anemone gets food particles from prey caught by the crab, and the crab is protected from the predators by the stinging cells of the anemone. Anemone fish, or clownfish, are able to live in the anemone since they are immune to the toxins contained within the nematocysts.

    Anthozoans remain polypoid throughout their lives and can reproduce asexually by budding or fragmentation, or sexually by producing gametes. Both gametes are produced by the polyp, which can fuse to give rise to a free-swimming planula larva. The larva settles on a suitable substratum and develops into a sessile polyp.

    Class Scyphozoa

    Class Scyphozoa includes all the jellies and is exclusively a marine class of animals with about 200 known species. The defining characteristic of this class is that the medusa is the prominent stage in the life cycle, although there is a polyp stage present. Members of this species range from 2 to 40 cm in length but the largest scyphozoan species, Cyanea capillata, can reach a size of 2 m across. Scyphozoans display a characteristic bell-like morphology (Figure).

    Part a shows a photo of a bright red jellyfish with a dome-shaped body. Long tentacles drift from the bottom edge of the dome, and ribbon-like appendages trail from the middle of the body. Part b shows a cross-section of a jellyfish, which has nematocyst-bearing tentacles hanging from the bottom of the dome. Underneath the middle of the dome is an opening that serves as both a mouth and an anus. The opening leads to a gastrovascular cavity that is lined with a gastrodermis. The outer surface of the body is covered with an epidermis. Between the epidermis and gastrodermis is the mesoglea.
    A jelly is shown (a) photographed and (b) in a diagram illustrating its morphology. (credit a: modification of work by "Jimg944"/Flickr; credit b: modification of work by Mariana Ruiz Villareal)

    In the jellyfish, a mouth opening is present on the underside of the animal, surrounded by tentacles bearing nematocysts. Scyphozoans live most of their life cycle as free-swimming, solitary carnivores. The mouth leads to the gastrovascular cavity, which may be sectioned into four interconnected sacs, called diverticuli. In some species, the digestive system may be further branched into radial canals. Like the septa in anthozoans, the branched gastrovascular cells serve two functions: to increase the surface area for nutrient absorption and diffusion; thus, more cells are in direct contact with the nutrients in the gastrovascular cavity.

    In scyphozoans, nerve cells are scattered all over the body. Neurons may even be present in clusters called rhopalia. These animals possess a ring of muscles lining the dome of the body, which provides the contractile force required to swim through water. Scyphozoans are dioecious animals, that is, the sexes are separate. The gonads are formed from the gastrodermis and gametes are expelled through the mouth. Planula larvae are formed by external fertilization; they settle on a substratum in a polypoid form known as scyphistoma. These forms may produce additional polyps by budding or may transform into the medusoid form. The life cycle (Figure) of these animals can be described as polymorphic, because they exhibit both a medusal and polypoid body plan at some point in their life cycle.

    The illustration shows the lifecycle of a jellyfish, which begins when sperm fertilizes an egg, forming a zygote. The zygote divides and grows into a planula larva, which looks like a swimming millipede. The planula larva anchors itself to the sea bottom and grows into a tube-shaped polyp. The polyp forms tentacles. Buds break off from the polyp and become dome-shaped ephyra, which resemble small jellyfish. The ephyra grow into medusas, the mature forms of the jellyfish.
    The lifecycle of a jellyfish includes two stages: the medusa stage and the polyp stage. The polyp reproduces asexually by budding, and the medusa reproduces sexually. (credit "medusa": modification of work by Francesco Crippa)

    Link to Learning

    QR Code representing a URL

    Identify the life cycle stages of jellies using this video animation quiz from the New England Aquarium.

    Class Cubozoa

    This class includes jellies that have a box-shaped medusa, or a bell that is square in cross-section; hence, are colloquially known as “box jellyfish.” These species may achieve sizes of 15–25 cm. Cubozoans display overall morphological and anatomical characteristics that are similar to those of the scyphozoans. A prominent difference between the two classes is the arrangement of tentacles. This is the most venomous group of all the cnidarians (Figure).

    The cubozoans contain muscular pads called pedalia at the corners of the square bell canopy, with one or more tentacles attached to each pedalium. These animals are further classified into orders based on the presence of single or multiple tentacles per pedalium. In some cases, the digestive system may extend into the pedalia. Nematocysts may be arranged in a spiral configuration along the tentacles; this arrangement helps to effectively subdue and capture prey. Cubozoans exist in a polypoid form that develops from a planula larva. These polyps show limited mobility along the substratum and, like scyphozoans, may bud to form more polyps to colonize a habitat. Polyp forms then transform into the medusoid forms.

    Photo A shows a person holding a small vial with a white jelly inside. The jelly is no bigger than a human fingernail. Illustration B shows a thimble-shaped jelly with two thick protrusions visible on either side. Tentacles radiate from the protrusions, and more tentacles radiate from the back. Photo C shows a “Danger, no swimming” sign on a beach, with a picture of a jelly.
    The (a) tiny cubazoan jelly Malo kingi is thimble shaped and, like all cubozoan jellies, (b) has four muscular pedalia to which the tentacles attach. M. kingi is one of two species of jellies known to cause Irukandji syndrome, a condition characterized by excruciating muscle pain, vomiting, increased heart rate, and psychological symptoms. Two people in Australia, where Irukandji jellies are most commonly found, are believed to have died from Irukandji stings. (c) A sign on a beach in northern Australia warns swimmers of the danger. (credit c: modification of work by Peter Shanks)

    Class Hydrozoa

    Hydrozoa includes nearly 3,200 species; most are marine, although some freshwater species are known (Figure). Animals in this class are polymorphs, and most exhibit both polypoid and medusoid forms in their lifecycle, although this is variable.

    The polyp form in these animals often shows a cylindrical morphology with a central gastrovascular cavity lined by the gastrodermis. The gastrodermis and epidermis have a simple layer of mesoglea sandwiched between them. A mouth opening, surrounded by tentacles, is present at the oral end of the animal. Many hydrozoans form colonies that are composed of a branched colony of specialized polyps that share a gastrovascular cavity, such as in the colonial hydroid Obelia. Colonies may also be free-floating and contain medusoid and polypoid individuals in the colony as in Physalia (the Portuguese Man O’ War) or Velella (By-the-wind sailor). Even other species are solitary polyps (Hydra) or solitary medusae (Gonionemus). The true characteristic shared by all of these diverse species is that their gonads for sexual reproduction are derived from epidermal tissue, whereas in all other cnidarians they are derived from gastrodermal tissue.

     Photo a shows Obelia, which has a body composed of branching polyps. Photo b shows a Portuguese Man O’ War, which has ribbon-like tentacles dangling from a clear, bulbous structure, resembling an inflated plastic bag. Photo c shows Velella bae, which resembles a flying saucer with a blue bottom and a clear, dome-shaped top. Photo d shows a hydra with long tentacles, extending from a tube-shaped body.
    (a) Obelia, (b) Physalia physalis, known as the Portuguese Man O‘ War, (c) Velella bae, and (d) Hydra have different body shapes but all belong to the family Hydrozoa. (credit b: modification of work by NOAA; scale-bar data from Matt Russell)

    Section Summary

    Cnidarians represent a more complex level of organization than Porifera. They possess outer and inner tissue layers that sandwich a noncellular mesoglea. Cnidarians possess a well-formed digestive system and carry out extracellular digestion. The cnidocyte is a specialized cell for delivering toxins to prey as well as warning off predators. Cnidarians have separate sexes and have a lifecycle that involves morphologically distinct forms. These animals also show two distinct morphological forms—medusoid and polypoid—at various stages in their lifecycle.

    Review Questions

    Cnidocytes are found in _____.

    1. phylum Porifera
    2. phylum Nemertea
    3. phylum Nematoda
    4. phylum Cnidaria

    Hint:

    D

    Cubozoans are ________.

    1. polyps
    2. medusoids
    3. polymorphs
    4. sponges

    Hint:

    C

    Free Response

    Explain the function of nematocysts in cnidarians.

    Hint:

    Nematocysts are “stinging cells” designed to paralyze prey. The nematocysts contain a neurotoxin that renders prey immobile.

    Compare the structural differences between Porifera and Cnidaria.

    Hint:

    Poriferans do not possess true tissues, while cnidarians do have tissues. Because of this difference, poriferans do not have a nervous system or muscles for locomotion, which cnidarians have.