Lesson 1

Introduction To Ratio TablesLesson 2

Summary PreparationLesson 5

Understanding A Gallery ProblemLesson 6

Gallery Problems Exercise

Please log in to save materials. Log in

- Subject:
- Mathematics
- Material Type:
- Full Course
- Level:
- Middle School
- Grade:
- 7
- Provider:
- Pearson
- Tags:

- License:
- Creative Commons Attribution Non-Commercial
- Language:
- English

# Education Standards

- 1
- 2
- 3
- 4
- 5
- ...
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115

Cluster: Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Standard: Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations as strategies to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

Cluster: Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Standard: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

Cluster: Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Standard: Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, The perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

Cluster: Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Standard: Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

Cluster: Mathematical practices

Standard: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Cluster: Mathematical practices

Standard: Reason abstractly and quantitatively. Mathematically proficient students make sense of the quantities and their relationships in problem situations. Students bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Cluster: Mathematical practices

Standard: Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Cluster: Mathematical practices

Standard: Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Cluster: Mathematical practices

Standard: Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Cluster: Mathematical practices

Standard: Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Cluster: Mathematical practices

Standard: Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 × 8 equals the well remembered 7 × 5 + 7 × 3, in preparation for learning about the distributive property. In the expression x^2 + 9x + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 – 3(x – y)^2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Cluster: Mathematical practices

Standard: Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y – 2)/(x –1) = 3. Noticing the regularity in the way terms cancel when expanding (x – 1)(x + 1), (x – 1)(x^2 + x + 1), and (x – 1)(x^3 + x^2 + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Cluster: Use random sampling to draw inferences about a population

Standard: Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

Cluster: Use random sampling to draw inferences about a population

Standard: Use random sampling to draw inferences about a population. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

Cluster: Draw informal comparative inferences about two populations

Standard: Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.

Cluster: Draw informal comparative inferences about two populations

Standard: Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space which compose the event.

Cluster: Investigate chance processes and develop, use, and evaluate probability models

Standard: Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

Cluster: Use properties of operations to generate equivalent expressions

Standard: Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

Cluster: Use properties of operations to generate equivalent expressions

Standard: Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that “increase by 5%” is the same as “multiply by 1.05.”

Standard: Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example, As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.

Cluster: Draw, construct, and describe geometrical figures and describe the relationships between them.

Standard: Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

Cluster: Draw, construct, and describe geometrical figures and describe the relationships between them.

Standard: Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

Cluster: Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Standard: Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

Cluster: Draw, construct, and describe geometrical figures and describe the relationships between them.

Standard: Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Cluster: Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Standard: Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

# Common Core State Standards Math

Grade 7,Ratios and Proportional RelationshipsCluster: Analyze proportional relationships and use them to solve real-world and mathematical problems

Standard: Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction (1/2)/(1/4) miles per hour, equivalently 2 miles per hour.

# Common Core State Standards Math

Grade 7,Ratios and Proportional RelationshipsCluster: Analyze proportional relationships and use them to solve real-world and mathematical problems

Standard: Recognize and represent proportional relationships between quantities.

# Common Core State Standards Math

Grade 7,Ratios and Proportional RelationshipsCluster: Analyze proportional relationships and use them to solve real-world and mathematical problems

Standard: Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.

# Common Core State Standards Math

Grade 7,Ratios and Proportional RelationshipsStandard: Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

# Common Core State Standards Math

Grade 7,Ratios and Proportional RelationshipsStandard: Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.

# Common Core State Standards Math

Grade 7,Ratios and Proportional RelationshipsStandard: Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.

# Common Core State Standards Math

Grade 7,Ratios and Proportional RelationshipsStandard: Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Standard: Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Standard: Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.

Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Standard: Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.

Standard: Understand subtraction of rational numbers as adding the additive inverse, p – q = p + (–q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.

Standard: Apply properties of operations as strategies to add and subtract rational numbers.

Standard: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

Standard: Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (–1)(–1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.

Standard: Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers then –(p/q) = (–p)/q = p/(–q). Interpret quotients of rational numbers by describing real-world contexts.

Standard: Apply properties of operations as strategies to multiply and divide rational numbers.

Standard: Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.

Standard: Solve real-world and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)

Cluster: Know that there are numbers that are not rational, and approximate them by rational numbers

Standard: Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

Cluster: Know that there are numbers that are not rational, and approximate them by rational numbers

Standard: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2). For example, by truncating the decimal expansion of √2 (square root of 2), show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.

Learning Domain: Geometry

Standard: Draw, construct, and describe geometrical figures and describe the relationships between them.

Indicator: Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

Learning Domain: Geometry

Standard: Draw, construct, and describe geometrical figures and describe the relationships between them.

Indicator: Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Learning Domain: Geometry

Standard: Draw, construct, and describe geometrical figures and describe the relationships between them.

Indicator: Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

Learning Domain: Geometry

Standard: Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Indicator: Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

Learning Domain: Geometry

Standard: Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Indicator: Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

Learning Domain: Geometry

Standard: Solve real-life and mathematical problems involving angle measure, area, surface area, and volume

Indicator: Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

Learning Domain: Ratios and Proportional Relationships

Standard: Analyze proportional relationships and use them to solve real-world and mathematical problems

Indicator: Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction (1/2)/(1/4) miles per hour, equivalently 2 miles per hour.

Learning Domain: Ratios and Proportional Relationships

Standard: Analyze proportional relationships and use them to solve real-world and mathematical problems

Indicator: Recognize and represent proportional relationships between quantities.

Learning Domain: Ratios and Proportional Relationships

Standard: Analyze proportional relationships and use them to solve real-world and mathematical problems

Indicator: Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.

Learning Domain: Ratios and Proportional Relationships

Indicator: Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

Learning Domain: Ratios and Proportional Relationships

Indicator: Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.

Learning Domain: Ratios and Proportional Relationships

Indicator: Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.

Learning Domain: Ratios and Proportional Relationships

Indicator: Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

Learning Domain: The Number System

Standard: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Indicator: Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

Learning Domain: The Number System

Standard: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Indicator: Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.

Learning Domain: The Number System

Standard: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers

Indicator: Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.

Learning Domain: The Number System

Indicator: Understand subtraction of rational numbers as adding the additive inverse, p - q = p + (-q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.

Learning Domain: The Number System

Indicator: Apply properties of operations as strategies to add and subtract rational numbers.

Learning Domain: The Number System

Indicator: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

Learning Domain: The Number System

Indicator: Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.

Learning Domain: The Number System

Indicator: Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers then -(p/q) = (-p)/q = p/(-q). Interpret quotients of rational numbers by describing real-world contexts.

Learning Domain: The Number System

Indicator: Apply properties of operations as strategies to multiply and divide rational numbers.

Learning Domain: The Number System

Indicator: Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.

Learning Domain: The Number System

Indicator: Solve real-world and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)

Learning Domain: Expressions and Equations

Standard: Use properties of operations to generate equivalent expressions

Indicator: Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

Learning Domain: Expressions and Equations

Standard: Use properties of operations to generate equivalent expressions

Indicator: Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that "increase by 5%"ť is the same as "multiply by 1.05."ť

Learning Domain: Expressions and Equations

Standard: Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Indicator: Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations as strategies to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

Learning Domain: Expressions and Equations

Standard: Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Indicator: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

Learning Domain: Expressions and Equations

Standard: Solve real-life and mathematical problems using numerical and algebraic expressions and equations

Indicator: Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, The perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

Learning Domain: Expressions and Equations

Indicator: Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example, As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.

Learning Domain: Statistics and Probability

Standard: Use random sampling to draw inferences about a population

Indicator: Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

Learning Domain: Statistics and Probability

Standard: Use random sampling to draw inferences about a population

Indicator: Use random sampling to draw inferences about a population. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

Learning Domain: Statistics and Probability

Standard: Draw informal comparative inferences about two populations

Indicator: Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.

Learning Domain: Statistics and Probability

Standard: Draw informal comparative inferences about two populations

Indicator: Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"ť), identify the outcomes in the sample space which compose the event.

Learning Domain: Statistics and Probability

Standard: Investigate chance processes and develop, use, and evaluate probability models

Indicator: Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

Learning Domain: Mathematical Practices

Standard: Mathematical practices

Indicator: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?"ť They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Learning Domain: Mathematical Practices

Standard: Mathematical practices

Indicator: Reason abstractly and quantitatively. Mathematically proficient students make sense of the quantities and their relationships in problem situations. Students bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize"Óto abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents"Óand the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Learning Domain: Mathematical Practices

Standard: Mathematical practices

Indicator: Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and"Óif there is a flaw in an argument"Óexplain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Learning Domain: Mathematical Practices

Standard: Mathematical practices

Indicator: Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Learning Domain: Mathematical Practices

Standard: Mathematical practices

Indicator: Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Learning Domain: Mathematical Practices

Standard: Mathematical practices

Indicator: Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Learning Domain: Mathematical Practices

Standard: Mathematical practices

Indicator: Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 x 8 equals the well remembered 7 x 5 + 7 x 3, in preparation for learning about the distributive property. In the expression x^2 + 9x + 14, older students can see the 14 as 2 x 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 - 3(x - y)^2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Learning Domain: Mathematical Practices

Standard: Mathematical practices

Indicator: Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y - 2)/(x -1) = 3. Noticing the regularity in the way terms cancel when expanding (x - 1)(x + 1), (x - 1)(x^2 + x + 1), and (x - 1)(x^3 + x^2 + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Learning Domain: The Number System

Standard: Know that there are numbers that are not rational, and approximate them by rational numbers

Indicator: Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

Learning Domain: The Number System

Standard: Know that there are numbers that are not rational, and approximate them by rational numbers

Indicator: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., ěŰ^2). For example, by truncating the decimal expansion of ‰ö_2 (square root of 2), show that ‰ö_2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.

Learning Domain: Ratios and Proportional Relationships

Standard: Analyze proportional relationships and use them to solve real-world and mathematical problems.

Indicator: Compute unit rates, including those involving complex fractions, with like or different units.

Learning Domain: Ratios and Proportional Relationships

Standard: Analyze proportional relationships and use them to solve real-world and mathematical problems.

Indicator: Recognize and represent proportional relationships between quantities.

Learning Domain: Ratios and Proportional Relationships

Standard:

Indicator: Decide whether two quantities in a table or graph are in a proportional relationship.

Learning Domain: Ratios and Proportional Relationships

Standard:

Indicator: Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

Learning Domain: Ratios and Proportional Relationships

Standard:

Indicator: Represent proportional relationships with equations.

Learning Domain: Ratios and Proportional Relationships

Standard:

Indicator: Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.

Learning Domain: Ratios and Proportional Relationships

Standard: Analyze proportional relationships and use them to solve real-world and mathematical problems.

Indicator: Solve multi-step real world and mathematical problems involving ratios and percentages.

Learning Domain: The Number System

Standard: Know that there are numbers that are not rational, and approximate them by rational numbers.

Indicator: Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. Explore the real number system and its appropriate usage in real-world situations.

Learning Domain: The Number System

Standard: Know that there are numbers that are not rational, and approximate them by rational numbers.

Indicator: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions.

# Math, Grade 7

Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.

Lesson 2

Model Integer AdditionLesson 3

Model Integer SubtractionLesson 7

Self Check ExerciseLesson 8

Gallery Problems ExerciseLesson 9

Model Integers MultiplicationLesson 12

Simplifying Numerical ExpressionsLesson 13

Understanding Rational NumbersLesson 14

Self Check ExerciseLesson 15

Gallery Problems Exercise

Lesson 5

Graphing A Table Of ValuesLesson 7

Expressing Ratios As A Unit RateLesson 8

Identifying Verbal DescriptionsLesson 11

Solution StrategiesLesson 12

Gallery Problems ExerciseLesson 14

Creating Equations, Tables & GraphsLesson 15

Percent Increase ProblemsLesson 16

Percent Decrease ProblemsLesson 17

Identifying Errors In ReasoningLesson 18

Understanding Percent ChangeLesson 19

Solution Strategies (Feedback)Lesson 20

Gallery Problems Exercise

Lesson 1

Shape CharacteristicsLesson 2

Four Types Of AnglesLesson 4

Diagonals Of A RhombusLesson 6

Classifying TrianglesLesson 7

Exploring PolygonsLesson 8

Pre-AssessmentLesson 9

Review QuizLesson 10

Gallery Problems Exercise

Lesson 1

House PlansLesson 2

PolygonsLesson 3

Building with PolygonsLesson 4

Measuring CirclesLesson 5

Area of a CircleLesson 6

ScaleLesson 7

Changing ScaleLesson 8

Applying Scale to ProjectLesson 9

Self Check ExerciseLesson 10

Gallery Problems ExerciseLesson 11

Calculating VolumeLesson 12

Applying The Volume FormulaLesson 13

Exploring Cross-SectionsLesson 14

Surface Area Of PrismsLesson 16

Unit ReviewLesson 17

Self Check ExerciseLesson 18

Gallery Problems ExerciseLesson 19

Unit Concepts Project PresentationLesson 20

Project Presentations (Feedback)

Lesson 1

Algebraic ReasoningLesson 3

Geometric ExpressionsLesson 7

Matching Equations To ProblemsLesson 9

Peer ReviewLesson 10

Gallery Problems ExerciseLesson 11

Solving & Graphing InequalitiesLesson 15

Self Check ExerciseLesson 16

Gallery Problems Exercise

Lesson 4

Experimental ProbabilityLesson 5

The Law Of Large NumbersLesson 6

Compound Events & Sample SpacesLesson 7

Fundamental Counting PrincipleLesson 10

Project ProposalLesson 11

Self Check ExerciseLesson 12

Sampling In Relation To ProbabilityLesson 13

Collecting & Analyzing DataLesson 14

Effects of A Nonrandom SampleLesson 15

Sampling ExperimentsLesson 16

Comparing Sets of DataLesson 18

Self Check ExerciseLesson 19

Gallery Problems ExerciseLesson 20

Group Project PresentationLesson 21

Project Presentations Feedback

Lesson 2

Project ProposalLesson 5

Interpreting Graphs & DiagramsLesson 6

Linear MeasurementsLesson 7

Refining Problem Solving SkillsLesson 8

Project Rubric & CriteriaLesson 9

Gallery Problems ExerciseLesson 10

Project PresentationLesson 11

Project Presentation (Continued)Lesson 12

Project Presentation (Feedback)