Search Results (8)

View
Selected filters:
  • NGSS.MS.LS3.2
Genetically Modified Organisms and Biotechnology
Conditions of Use:
Remix and Share
Rating

Students will construct an argument based on evidence regarding their position on genetically modified organisms (GMOs). Students will conduct an inquiry investigation in Mendelian genetics using Wisconsin Fast Plants.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Lesson Plan
Provider:
South Metro-Salem STEM Partnership
Author:
Toni Hanson
Date Added:
07/02/2015
The Geniverse Lab Demo
Conditions of Use:
Read the Fine Print
Rating

The Geniverse software is being developed as part of a five-year research project funded by the National Science Foundation. Still in its early stages, a Beta version of the software is currently being piloted in six schools throughout New England. We invite you to try the current Beta version, keeping in mind that you may encounter errors or pages that are not fully functional. If you encounter any problem, it may help to refresh or reload the web page.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Data Set
Game
Interactive
Student Guide
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Heredity Mix n Match
Conditions of Use:
Read the Fine Print
Rating

Students randomly select jelly beans (or other candy) that represent genes for several human traits such as tongue-rolling ability and eye color. Then, working in pairs (preferably of mixed gender), students randomly choose new pairs of jelly beans from those corresponding to their own genotypes. The new pairs are placed on toothpicks to represent the chromosomes of the couple's offspring. Finally, students compare genotypes and phenotypes of parents and offspring for all the "couples" in the class. In particular, they look to see if there are cases where parents and offspring share the exact same genotype and/or phenotype, and consider how the results would differ if they repeated the simulation using more than four traits.

Subject:
Engineering
Genetics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/26/2008
Investigating Reproductive Strategies
Rating

Students work in pairs to compare five aspects of an organism that reproduces sexually, asexually, or both sexually and asexually. The activity comes with a chart for the students to fill out and with information sheets on twelve organisms. As a class, students share their comparisons and generate a list of general characteristics for each mode of reproduction and then discuss the advantages and disadvantages of both. Included in the discussion are reproductive mechanisms and genetic variation.

Subject:
Biology
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
University of Utah
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
Making Babies with Punnett Squares
Conditions of Use:
Remix and Share
Rating

In the BabyMaker activity, students begin by identifying their own genetic traits, answering a series of questions about their facial features. As they input their phenotype, an animated cartoon representation of themselves as a baby is created. Students then randomly generate a second baby to “cross” with, and proceed to create new generations of babies by filling in Punnett Squares and by reading probabilities of expressed traits from Punnett Squares that are filled in for them. If they make a mistake, their babies might be missing a body part! This activity was heavily inspired by a paper-based activity from Cheryl Massengale.

Subject:
Life Science
Material Type:
Activity/Lab
Author:
Eli Sheldon
Date Added:
02/22/2017
Meiosis
Conditions of Use:
Read the Fine Print
Rating

Meiosis is the process by which gametes (eggs and sperm) are made. Gametes have only one set of chromosomes. Therefore, meiosis involves a reduction in the amount of genetic material. Each gamete has only half the chromosomes of the original germ cell. Explore meiosis with a computer model of dragons. Run meiosis, inspect the chromosomes, then choose gametes to fertilize. Predict the results of the dragon offspring and try to make a dragon without legs. Learn why all siblings do not look alike.

Subject:
Life Science
Genetics
Mathematics
Material Type:
Activity/Lab
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
What Makes us Human?
Conditions of Use:
Remix and Share
Rating

In this problem-based, blended learning mondule, students will investigate what is the single - most defining trait that makes  us human? Is it our highly developed speech, our imagination, creativity, or our upright walking posture?  Humans have mastered fire, developed tools, art, music, recorded our history, and accomplished a countless number of other things. In this module, students will explore genetics concepts regarding inheritance, natural selection, biology of the human brain, and our hominid evolution over the last two hundred thousand years. Students will utilize guided research, and independent work to formulate an argumentative essay, and substantiating their claim with evidence from their research. When the argumentative essay is completed, students will create a project from a choice board that demonstrates their understanding of one of the concepts of our humanity.

Subject:
Environmental Science
Material Type:
Lesson Plan
Author:
Blended Learning Teacher Practice Network
What's Dominant?
Conditions of Use:
Read the Fine Print
Rating

In a class discussion format, the teacher presents background information about basic human genetics. The number of chromosomes in both body cells and egg and sperm cells is covered, as well as the concept of dominant and recessive alleles. Students determine whether or not they possess the dominant allele for the tongue-rolling gene as an example.

Subject:
Engineering
Genetics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014