This resource is for teachers to develop their knowledge around climate science ...
This resource is for teachers to develop their knowledge around climate science along with NGSS-aligned teaching strategies . Teachers can learn more about the following climate change impacts: coastal hazards, fire, human health, floods & droughts, agriculture and species & ecosystems. Users should reference the "STEM Seminar Slides_Template" as a guide for a daylong training and use the other materials as supplemental information and resources.
This set of five activities focuses on how climate change can affect ...
This set of five activities focuses on how climate change can affect agriculture, including crop production and ranching. The activities in this guide are appropriate for both formal and informal settings and all student handouts, instructor guides, and supporting files are included. The curriculum is designed for five days of activities that build on one another, but can also be used individually.
In Unit 2 of the Explore the Salish Sea curriculum, students will ...
In Unit 2 of the Explore the Salish Sea curriculum, students will review the water cycle, learn the parts of a watershed, and the effects of erosion and pollution, then learn ways of purifying these waters before they enter our streams and estuaries to safeguard these ecosystems for marine life and us. Each unit in this series contains a detailed unit plan, a slideshow, student journal, and assessments. All elements are adaptable and can be tailored to your local community.
Species extinction is happening at an alarming rate according to scientists. In ...
Species extinction is happening at an alarming rate according to scientists. In this lesson, students are asked to consider why extinction is a problem that we should concern us. They are taught that destruction of habitat is the main reason many species are threatened. The lesson explores ways that engineers can help save endangered species.
In this activity, students listen to a podcast and then investigate causes ...
In this activity, students listen to a podcast and then investigate causes of and solutions to food waste, plant-based recipes to get excited about, and the diversity and variety of heirloom foods.
Students are introduced to innovative stormwater management strategies that are being used ...
Students are introduced to innovative stormwater management strategies that are being used to restore the hydrology and water quality of urbanized areas to pre-development conditions. Collectively called green infrastructure (GI) and low-impact development (LID) technologies, they include green roofs and vegetative walls, bioretention or rain gardens, bioswales, planter boxes, permeable pavement, urban tree canopy, rainwater harvesting, downspout disconnection, green streets and alleys, and green parking. These approaches differ from the traditional centralized stormwater collection system with the idea of handling stormwater at its sources, resulting in many environmental, economic and societal benefits. A PowerPoint® presentation provides photographic examples, and a companion file gives students the opportunity to sketch in their ideas for using the technologies to make improvements to 10 real-world design scenarios.
Students are presented with a guide to rain garden construction in an ...
Students are presented with a guide to rain garden construction in an activity that culminates the unit and pulls together what they have learned and prepared in materials during the three previous associated activities. They learn about the four vertical zones that make up a typical rain garden with the purpose to cultivate natural infiltration of stormwater. Student groups create personal rain gardens planted with native species that can be installed on the school campus, within the surrounding community, or at students' homes to provide a green infrastructure and low-impact development technology solution for areas with poor drainage that often flood during storm events.
This unit explores Performance Expectations MS- LS2-4, LS2-5 by having students collect ...
This unit explores Performance Expectations MS- LS2-4, LS2-5 by having students collect local ecosystems data with a variety of computational tools: pH sensors, turbidity, oxygen levels and temperature – and to develop a presentation to communicate how and why their stream is a healthy habitat, or not!
Through multi-trial experiments, students are able to see and measure something that ...
Through multi-trial experiments, students are able to see and measure something that is otherwise invisible to them seeing plants breathe. Student groups are given two small plants of native species and materials to enclose them after watering with colored water. After being enclosed for 5, 10 and 15 minutes, teams collect and measure the condensed water from the plants' "breathing," and then calculate the rates at which the plants breathe. A plant's breath is known as transpiration, which is the flow of water from the ground where it is taken up by roots (plant uptake) and then lost through the leaves. Students plot volume/time data for three different native plant species, determine and compare their transpiration rates to see which had the highest reaction rate and consider how a plant's unique characteristics (leaf surface area, transpiration rate) might figure into engineers' designs for neighborhood stormwater management plans.
This unit covers the processes of photosynthesis, extinction, biomimicry and bioremediation. In ...
This unit covers the processes of photosynthesis, extinction, biomimicry and bioremediation. In the first lesson on photosynthesis, students learn how engineers use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system. In the next lesson on species extinction, students learn that it is happening at an alarming rate. Students discover that the destruction of habitat is the main reason many species are threatened and how engineers are trying to stop this habitat destruction. The third lesson introduces students to the idea of biomimicry or looking to nature for engineering ideas. And, in the fourth and final lesson, students learn about a specialty branch of engineering called bioremediation the use of living organisms to aid in the clean up of pollutant spills.
Have you ever dreamed of becoming an astronaut? Use this slide show ...
Have you ever dreamed of becoming an astronaut? Use this slide show presentation as an introduction to the many challenges of living and working in space.
Students are introduced to the concept of tracking and spatial movements of ...
Students are introduced to the concept of tracking and spatial movements of animals in relation to the environments in which they live. Students improve their understanding of animal tracking and how technology is used in this process.
The marine environment is unique and because little light penetrates under water, ...
The marine environment is unique and because little light penetrates under water, technologies that use sound are required to gather information. The seafloor is characterized using underwater sound and acoustical systems. Current technological innovations enable scientists to further understand and apply information about animal locations and habitat. Remote sensing and exploration with underwater vehicles enables researchers to map and understand the sea floor. Similar technologies also aid in animal tracking, a method used within science and commercial industries. Through inquiry-based learning techniques, students learn the importance of habitat mapping and animal tracking.
The following lesson is an introduction to the ideas and implications of ...
The following lesson is an introduction to the ideas and implications of animal tracking. Animal tracking is a useful method used within science and commercial industries. For instance, when planning the development coastal areas, animal presence and movement should be taken into consideration. The lesson engages students in an activity to monitor animal foraging behavior on a spatial scale. The students will break into groups and track each other's movements as they move through a pre-determined course. The results will be recorded both individually and collaboratively in an attempt to understand animal movement regarding foraging behavior. Students will also engage in a creative design activity, focusing on how they would design a tag for a marine animal of their choice. In conclusion, instructors will query the class on data interpretation and how spatial information is important in relation to commercial, conservation, and scientific research decisions.
This activity illustrates the interrelationship between science and engineering in the context ...
This activity illustrates the interrelationship between science and engineering in the context of extinction prevention. There are two parts to the activity. The first part challenges students to think like scientists as they generate reports on endangered species and give presentations worthy of a news channel or radio broadcast. The second part puts students in the shoes of engineers, designing ways to help the endangered species.
Take a breath — where does the oxygen you inhaled come from? ...
Take a breath — where does the oxygen you inhaled come from? In our changing world, will we always have enough oxygen? What is in water that supports life? What is known? How do we know what we know about our vast oceans? These are just a few of the driving questions explored in this interactive STEAM high school curriculum module.
Students in marine science, environmental science, physics, chemistry, biology, integrated science, biotechnology and/or STEAM courses can use this curriculum module in order to use real-world, big data to investigate how our “invisible forest” influences ocean and Earth systems. Students build an art project to represent their new understanding and share this with the broader community.
This 4-week set of lessons is based on the oceanographic research of Dr. Anne Thompson of Portland State University in Oregon, which focuses on the abundant ocean phytoplankton Prochlorococcus. These interdisciplinary STEAM lessons were inspired by Dr. Thompson’s lab and fieldwork as well as many beautiful visualizations of Prochlorococcus, the ocean, and Earth. Students learn about the impact and importance of Prochlorococcus as the smallest and most abundant photosynthetic organism on our planet. Through the lessons, students act as both scientists and artists as they explore where breathable oxygen comes from and consider how to communicate the importance of tiny cells to human survival.
This module is written as a phenomenon-based, Next Generation Science Standards (NGSS) three-dimensional learning unit. Each of the lessons below also has an integrated, optional Project-Based Learning component that guides students as they complete the PBL process. Students learn to model a system and also design and evaluate questions to investigate phenomena. Students ultimately learn what is in a drop of ocean water and showcase how their drop contributes to our health and the stability and dynamics of global systems.
Los estudiantes exploran el fenómeno de cómo un árbol obtiene su masa. ...
Los estudiantes exploran el fenómeno de cómo un árbol obtiene su masa. Se les anima a pensar en lo que saben sobre la fotosíntesis y explicar lo que saben y lo que se preguntan sobre el fenómeno de una semilla que se transforma en un árbol grande y tiene masa. Específicamente, el carbono se absorbe de la atmósfera en forma de CO2 y se transforma en glucosa para proporcionar energía y, en última instancia, material de construcción (celulosa). En este caso, la captura de carbono se refiere a la eliminación de carbono (en la forma de dióxido de carbono) de la atmósfera a través del proceso de fotosíntesis. El almacenamiento de carbono se refiere a la cantidad de carbono unido al material leñoso por encima y por debajo del suelo.
Students explore the phenomena of how a tree gets its mass. They ...
Students explore the phenomena of how a tree gets its mass. They are encouraged to think back to what they know about photosynthesis and explain what they know and what they wonder about the phenomena of a seed transforming into a large tree and having mass. Specifically, carbon is taken in from the atmosphere in the form of CO2 and transformed into glucose to provide energy and ultimately building material (cellulose). In this storyline, carbon sequestration refers to the removal of carbon (in the form of carbon dioxide) from the atmosphere through the process of photosynthesis. Carbon storage refers to the amount of carbon bound up in woody material above and below ground. Carbon sequestration occurs in trees, other plants, the ocean, and soil. Not all plants sequester the same amount of carbon, for example, there’s a difference in the amount of carbon sequestered between young and old trees, and between different species of trees. This has implications for working forests and old growth forests. Using information from this storyline, students will draw conclusions about the value of managing forests to benefit human needs and natural needs.
Urban forests provide many benefits to a community and can minimize the ...
Urban forests provide many benefits to a community and can minimize the human impact on the environment. Students will explore the impacts an urban community has on the environment. Students will discover the role trees play in an urban community and how trees can affect the ecosystem, human wellbeing, and provide economic value. Students will explore Indigenous relationships with trees. During the course of this storyline, students will measure and monitor urban forest ecosystem benefits, perform a field investigation, and design a development to minimize negative environmental impacts
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.