Updating search results...

Search Resources

16 Results

View
Selected filters:
  • wind-power
D-Lab: Energy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

D-Lab: Energy offers a hands-on, project-based approach that engages students in understanding and addressing the applications of small-scale, sustainable energy technology in developing countries where compact, robust, low-cost systems for generating power are required. Projects may include micro-hydro, solar, or wind turbine generators along with theoretical analysis, design, prototype construction, evaluation and implementation. Students will have the opportunity both to travel to Nicaragua during spring break to identify and implement projects.
D-Lab: Energy is part of MIT's D-Lab program, which fosters the development of appropriate technologies and sustainable solutions within the framework of international development.
This course is an elective subject in MIT’s undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Cultural Geography
Electronic Technology
Engineering
Environmental Science
Environmental Studies
Physical Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Banzaert, Amy
Gandhi, Amit
Date Added:
02/01/2011
D-Lab I: Development
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to be visited as well as an introduction to the local languages.

Subject:
Applied Science
Atmospheric Science
Cultural Geography
Economics
Engineering
Physical Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sanyal, Bishwapriya
Serrat, Victor Grau
Smith, Amy
Date Added:
09/01/2009
The Energy Crisis: Past and Present
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and the challenges of clean energy, the Middle East and supply of oil, the energy crisis of the 1970s, and global warming.

Subject:
Applied Science
Arts and Humanities
Career and Technical Education
Environmental Science
Environmental Studies
History
Political Science
Social Science
U.S. History
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Jacobs, Meg
Date Added:
09/01/2010
The Energy Crisis: Past and Present
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and the challenges of clean energy, the Middle East and supply of oil, the energy crisis of the 1970s, and global warming.

Subject:
History
U.S. History
Material Type:
Homework/Assignment
Lecture Notes
Syllabus
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Meg Jacobs
Date Added:
01/01/2010
Energy, Environment, and Society: Global Politics, Technologies, and Ecologies of the Water-Energy-Food Crisis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

With increasing public awareness of the multiple effects of global environmental change, the terms water, energy, and food crisis have become widely used in scientific and political debates on sustainable development and environmental policy. Although each of these crises has distinct drivers and consequences, providing sustainable supplies of water, energy, and food are deeply interrelated challenges and require a profound understanding of the political, socioeconomic, and cultural factors that have historically shaped these interrelations at a local and global scale.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
William San Martin Aedo
Date Added:
02/16/2011
Following a Devastating Tornado, Town and Hospital Rebuild to Harness Wind Energy
Read the Fine Print
Rating
0.0 stars

After 90 percent of the town was damaged or destroyed by a tornado, Greensburg, Kansas, and Kiowa County Memorial Hospital developed a Long-Term Community Recovery plan to rebuild for resilience.

Subject:
Atmospheric Science
Physical Science
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
08/09/2016
Gone with the Wind - Sail Cars!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the use of wind power in the design, construction and testing of "sail cars," which, in this case, are little wheeled carts with masts and sails that are powered by the moving air generated from a box fan. The scientific method is reviewed and reinforced with the use of controls and variables, and the engineering design process is explored. The focus of the activity is on renewable energy, as well as the design, testing and redesign of small cars made from household materials. The activity (and an extension worksheet) includes the use of kinematic equations using distance, time traveled and speed to enforce exponents and decimals.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Emily Gill
Kristi Ekern
Wyatt Champion
Date Added:
10/14/2015
Grade 2 and 3: What's the Big Deal with Wind from Gonzaga Climate Center
Unrestricted Use
CC BY
Rating
0.0 stars

In partnership with the Washington State Office of the Superintendent of Public Instruction (OSPI) and the legislature-funded ClimeTime program, the Gonzaga Climate Center has created the Climate Literacy Fellows program.  This lesson was developed in collaboration with the Gonzaga Science in Action! program.  The Science in Action! Program helped test the kits included in these lessons and helped guide Gonzaga undergraduates in developing the accompanying lessons. We thank Gonzaga SIA! for their collaboration and support!

Subject:
Environmental Science
Environmental Studies
Physical Science
Material Type:
Activity/Lab
Homework/Assignment
Interactive
Lesson
Lesson Plan
Author:
Gonzaga Climate Institute
Date Added:
07/22/2022
Introduction to Sustainable Energy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Electronic Technology
Engineering
Environmental Science
Environmental Studies
Physical Science
Political Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Field, Randall
Golay, Michael
Green, William
Wright, John
Date Added:
09/01/2010
Large-scale battery storage: Challenges and opportunities for technology and policy
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"In September of 2016, a violent storm left South Australia without power. At the time, 57% of the region's power came from wind and solar-a stark contrast to the coal-dominated energy mix of its neighbors to the east. To some politicians and backers of coal, it was proof that renewable energy couldn't be trusted. To renewable energy pioneers, it was a technical challenge: could a large-enough battery cushion the swings in wind and solar power? In a recent review article published in MRS Energy & Sustainability, energy experts weigh in, considering-among other factors-the political and legal ramifications of going big with batteries. The summer after South Australia's big blackout, the state government doubled down and announced the construction of the world's biggest battery. Within 100 days, the clean-energy company Tesla delivered a 129-MWh lithium-ion battery, all for $91 million without government subsidies..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Engineering
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/20/2019
S2 E4: TIL about wind and solar power
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

What will it take to generate the electricity our society needs, without generating carbon emissions? In this episode of TILclimate (Today I Learned Climate), Dr. Magdalena Klemun at the MIT Institute for Data, Systems and Society joins host Laur Hesse Fisher to begin exploring this question, starting with wind and solar power. What exactly are wind and solar power? What challenges do we currently face when trying to use wind and solar to generate most of our electricity? What’s the role of energy storage, and what could our future zero-carbon energy mix look like?

Subject:
Atmospheric Science
Physical Science
Material Type:
Lesson
Provider:
MIT
Provider Set:
TILclimate Educator Hub
Date Added:
06/22/2022
The Universal Language of Engineering Drawings
Read the Fine Print
Educational Use
Rating
0.0 stars

Students practice the ability to produce clear, complete, accurate and detailed design drawings through an engineering design challenge. Using only the specified materials, teams are challenged to draw a design for a wind-powered car. Then, they trade engineering drawings with another group and attempt to construct the model cars in order to determine how successfully the original design intentions were communicated through sketches, dimensions and instructions.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacob Crosby
Malinda Schaefer Zarske
Date Added:
09/18/2014
Wind Energy
Unrestricted Use
CC BY
Rating
0.0 stars

Word Count: 2004

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Textbook
Author:
Jim Trepka
Date Added:
11/22/2021
Wind Generator
Read the Fine Print
Rating
0.0 stars

Windmills have been used for hundreds of years to collect energy from the wind in order to pump water, grind grain, and more recently generate electricity. There are many possible designs for the blades of a wind generator and engineers are always trying new ones. Design and test your own wind generator, then try to improve it by running a small electric motor connected to a voltage sensor.

Subject:
Applied Science
Chemistry
Engineering
Geoscience
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
Wind Power! Designing a Wind Turbine
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers transform wind energy into electrical energy by building their own miniature wind turbines and measuring the electrical current it produces. They explore how design and position affect the electrical energy production.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
09/18/2014