Updating search results...

Search Resources

28 Results

View
Selected filters:
  • polymers
APPLICATIONS OF POLYMERS IN AUTOMOBILE
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

this document contains usses of polymers in various parts of the automobile and respective examples with the requirement of material to make product and polymers selected with similar properties.

Subject:
Applied Science
Chemistry
Environmental Science
Material Type:
Assessment
Author:
kayanat malim
Date Added:
03/12/2023
Battle of the Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the properties of composites using inexpensive materials and processing techniques. They create beams using Laffy Taffy and water, and a choice of various reinforcements (pasta, rice, candies) and fabricating temperatures. Student groups compete for the highest strength beam. They measure flexure strength with three-point bend tests and calculations. Results are compared and discussed to learn how different materials and reinforcement shapes affect material properties and performance.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
CARBON (2014)
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Every form of life that we know of requires carbon. This Mini Lecture introduces to the chemically most versatile element, essential to all life, both as an energy source and as building stock. Lecture snippets of the chemists Robert Curl und Karl Ziegler explain the structure of the symmetric C60 molecule as well as the Ziegler-Natta process used to make polymers.

Subject:
Chemistry
Physical Science
Material Type:
Lecture
Provider:
Lindau Nobel Laureate Meetings
Provider Set:
Mini Lectures
Date Added:
04/13/2018
Edible Algae Models
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make edible models of algal cells as a way to tangibly understand the parts of algae that are used to make biofuels. The molecular gastronomy techniques used in this activity blend chemistry, biology and food for a memorable student experience. The models use sodium alginate, which forms a gel matrix when in contact with calcium or moderate acid, to represent the complex-carbohydrate-composed cell walls of algae. Cell walls protect the algal cell contents and can be used to make biofuels, although they are more difficult to use than the starch and oils that accumulate in algal cells. The liquid juice interior of the algal models represents the starch and oils of algae, which are easily converted into biofuels.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Lauren Jabusch
Date Added:
05/16/2017
Electronic and Mechanical Properties of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fitzgerald, Eugene
Gibson, Lorna
Date Added:
09/01/2007
Everything Science: Physical Science, Grade 12
Unrestricted Use
CC BY
Rating
0.0 stars

This is a comprehensive science textbook for Grade 12. You can download or read it on-line on your mobile phone, computer or iPad. Every chapter comes with video lessons and explanations which help bring the ideas and concepts to life. Summary presentations at the end of every chapter offer an overview of the content covered, with key points highlighted for easy revision. Topics covered are: organic molecules, organic chemistry, organic macromolecules, polymers, reaction rates, electrochemical reactions, the chemical industry, motion in two dimensions, mechanical properties of matter, work, energy and power, doppler effect, colour, 2D and 3D wavefronts, wave nature of matter, electrodynamics, electronics, electromagnetic radiation, optical phenomena and properties of matter, light, photoelectric effect, lasers. This book is based upon the original Free High School Science Text series.

Subject:
Career and Technical Education
Electronic Technology
Physical Science
Physics
Material Type:
Textbook
Provider:
Siyavula
Date Added:
04/12/2012
Introduction to Solid-State Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, we will explore what makes things in the world the way they are and why, to understand the science and consider the engineering. We learn not only why the physical world behaves the way it does, but also how to think with chemical intuition, which can’t be gained simply by observing the macroscopic world.
This 2018 version of 3.091 by Jeffrey Grossman and the 2010 OCW version by Don Sadoway cover similar topics and both provide complete learning materials. This 2018 version also includes Jeffrey Grossman’s innovative Goodie Bags, Why This Matters, and CHEMATLAS content, as well as additional practice problems, quizzes, and exams.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Grossman, Jeffrey
Date Added:
09/01/2018
Investigating Plastic Polymers: Building a Model and Relating to Real Life Connections
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a short unit (including hands on activities) on polymers and plastics to expand our study of physical/chemical properties and changes.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Amy Fahey
Date Added:
08/16/2012
Investigating Polymers: Comparing Two Liquid Glue Based Polymers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this fun hands-on activity, students will create two different polymers, similar to Flubber and Silly Putty, using Elmers glue, liquid laundry starch, and Borax. Students will then compare the properties of the two polymers.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Linda Ruehle
Date Added:
08/16/2012
Materials in Today's World
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

What materials have you touched today? In today's society, virtually every segment of our personal and professional lives is influenced by the limitations, availability, and economic considerations of the materials used. Through readings and science documentaries, this course will show you how and why certain materials are selected for different applications and how the processing, structure, properties, and performance of materials are intrinsically linked. You will be introduced to the basic science and technology of materials, how the world has been shaped by materials, and how knowledge of materials can be used to understand modern materials and the development of new ones.

Subject:
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Ron Redwing
Date Added:
10/07/2019
Mechanical Behavior of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
van Vliet, Krystyn
Date Added:
02/01/2008
Mechanics and Materials II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Anand, Lallit
Parks, David
Date Added:
02/01/2004
Molecular Models and 3D Printing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to use computer-aided design (CAD) software to create “complete” 3D-printed molecule models that take into consideration bond angles and lone-pair positioning. To begin, they explore two interactive digital simulations: “build a molecule” and “molecule shapes.” This aids them in comparing and contrasting existing molecular modeling approaches—ball-and-stick, space-filling, and valence shell electron pair repulsion (VSEPR)—so as to understand their benefits and limitations. In order to complete a worksheet that requires them to draw Lewis dot structures, they determine the characteristics and geometries (valence electrons, polar bonds, shape type, bond angles and overall polarity) of 12 molecules. They also use molecular model kits. These explorations and exercises prepare them to design and 3D print their own models to most accurately depict molecules. Pre/Post quizzes, a step-by-step Blender 3D software tutorial handout and a worksheet are provided.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Conrad Faine
Kerlyn Prada
Date Added:
03/14/2017
Molecular Principles of Biomaterials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subject:
Applied Science
Biology
Engineering
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Irvine, Darrell
Date Added:
02/01/2006
Molecular Self-Assembly
Read the Fine Print
Rating
0.0 stars

In this activity, students interact with 12 models to observe emergent phenomena as molecules assemble themselves. Investigate the factors that are important to self-assembly, including shape and polarity. Try to assemble a monolayer by "pushing" the molecules to the substrate (it's not easy!). Rotate complex molecules to view their structure. Finally, create your own nanostructures by selecting molecules, adding charges to them, and observing the results of self-assembly.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Organic Chemistry Videos
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Learn about organic chemistry through engaging, bitesize animated videos. They are organised into these chapters: crude oil, functional groups, alkanes and alkenes, alcohols, carboxylic acids and esters, polymers, proteins, carbohydrates, organic chemistry in everyday life and nanoscience.

Subject:
Physical Science
Material Type:
Lecture
Date Added:
01/12/2016
Organic Optoelectronics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course examines optical and electronic processes in organic molecules and polymers that govern the behavior of practical organic optoelectronic devices. Electronic structure of a single organic molecule is used as a guide to the electronic behavior of organic aggregate structures. Emphasis is placed on the use of organic thin films in active organic devices including organic LEDs, solar cells, photodetectors, transistors, chemical sensors, memory cells, electrochromic devices, as well as xerography and organic non-linear optics. How to reach the ultimate miniaturization limit of molecular electronics and related nanoscale patterning techniques of organic materials will also be discussed. The class encompasses three laboratory sessions during which the students will practice the use of select vacuum and non-vacuum organic deposition techniques by making their own active organic devices.

Subject:
Applied Science
Biology
Career and Technical Education
Electronic Technology
Engineering
Life Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bulovic, Vladimir
Date Added:
02/01/2003
Plastic Polymers: Investigating Their Flexibility
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a short unit (including hands on activities) on polymers and plastics to expand our study of physical/chemical properties and changes.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Gloria Brandt
Date Added:
08/16/2012