Updating search results...

Search Resources

10 Results

View
Selected filters:
  • physical-chemistry
General Biochemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on contributions of biochemistry toward an understanding of the structure and functioning of organisms, tissues, and cells. Topics include:

Chemistry and functions of constituents of cells and tissues and the chemical and physical-chemical basis for the structures of nucleic acids, proteins, and carbohydrates.
Basic enzymology and biochemical reaction mechanisms involved in macromolecular synthesis and degradation, signaling, transport, and movement.
General metabolism of carbohydrates, fats, and nitrogen-containing materials such as amino acids, proteins, and related compounds.

NOTE: The first half of this course, taught by Prof. Yaffe, is available on the MITx platform as 7.05x Biochemistry: Biomolecules, Methods, and Mechanisms. This OCW website provides content primarily from the second half with Prof. Vander Heiden, which focuses on metabolism.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Vander Heiden, Matthew
Yaffe, Michael
Date Added:
02/01/2020
Introduction to Solid State Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to Solid State Chemistry is a first-year single-semester college course on the principles of chemistry. This unique and popular course satisfies MIT's general chemistry degree requirement, with an emphasis on solid-state materials and their application to engineering systems.
Course Format
This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:

A complete set of Lecture Videos by Prof. Sadoway.
Detailed Course Notes for most video sessions, plus readings in several suggested textbooks.
Homework problems with solution keys, to further develop your understanding.
For Further Study collections of links to supplemental online content.
Self-Assessment pages containing quiz and exam problems to assess your mastery, and Help Session Videos in which teaching assistants take you step-by-step through exam problem solutions.

About OCW Scholar
OCW Scholar courses are designed specifically for OCW’s single largest audience: independent learners. These courses are substantially more complete than typical OCW courses, and include new custom-created content as well as materials repurposed from previously published courses. Learn more about OCW Scholar.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sadoway, Donald
Date Added:
09/01/2010
Molecule Shapes
Unrestricted Use
CC BY
Rating
0.0 stars

Explore molecule shapes by building molecules in 3D! How does molecule shape change with different numbers of bonds and electron pairs? Find out by adding single, double or triple bonds and lone pairs to the central atom. Then, compare the model to real molecules!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
Jonathan Olson
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Date Added:
10/10/2011
Molecule Shapes: Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Explore molecule shapes by building molecules in 3D! Find out how a molecule's shape changes as you add atoms to a molecule.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
Jonathan Olson
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Date Added:
01/31/2012
Physical Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Physical Chemistry is the application of physical principles and measurements to understand the properties of matter, as well as for the development of new technologies for the environment, energy and medicine. Advanced Physical Chemistry topics include different spectroscopic methods (Raman, ultrafast and mass spectroscopy, nuclear magnetic and electron paramagnetic resonance, x-ray absorption and atomic force microscopy) as well as theoretical and computational tools to provide atomic-level understanding for applications such as: nanodevices for bio-detection and receptors, interfacial chemistry of catalysis and implants, electron and proton transfer, protein function, photosynthesis and airborne particles in the atmosphere.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
LibreTexts
Date Added:
05/12/2016
Physical Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems — the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, spectroscopy.
Acknowledgements
The material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCW was prepared in the early 1990's by Prof. Sylvia T. Ceyer. These were revised and transcribed to electronic form primarily by Prof. Keith A. Nelson. The current version includes additional contributions by Professors Moungi G. Bawendi, Robert W. Field, Robert G. Griffin, Robert J. Silbey and John S. Waugh, all of whom have taught the course in the recent past.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Griffin, Robert
Van Voorhis, Troy
Date Added:
09/01/2007
Physical Chemistry II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.
Acknowledgements
The staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Field, Robert
Griffin, Robert
Date Added:
02/01/2008
Polymer Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Thomas, Edwin
Date Added:
02/01/2007
Polymer Science Laboratory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Experiments in this class are broadly aimed at acquainting students with the range of properties of polymers, methods of synthesis, and physical chemistry. Some examples of laboratory work include solution polymerization of acrylamide, bead polymerization of divinylbenzene, and interfacial polymerization of nylon 6,10. Evaluation of networks by tensile and swelling experiments, rheology of polymer solutions and suspensions, and physical properties of natural and silicone rubber are also covered.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Breindel, Harlan
Hammond, Paula
Date Added:
09/01/2005
Structure of Earth Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a comprehensive introduction to crystalline structure, crystal chemistry, and bonding in rock-forming minerals. It introduces the theory relating crystal structure and crystal symmetry to physical properties such as refractive index, elastic modulus, and seismic velocity. It surveys the distribution of silicate, oxide, and metallic minerals in the interiors and on the surfaces of planets, and discusses the processes that led to their formation. It also addresses why diamonds are hard and why micas split into thin sheets.

Subject:
Applied Science
Atmospheric Science
Chemistry
Engineering
Geology
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Evans, J.
Grove, Timothy
Date Added:
09/01/2004