Updating search results...

Search Resources

8 Results

View
Selected filters:
  • nadph
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Cell, Photosynthesis, The Light-Dependent Reactions of Photosynthesis
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Explain how plants absorb energy from sunlightDescribe short and long wavelengths of lightDescribe how and where photosynthesis takes place within a plant

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
Biology, The Cell, Photosynthesis, The Light-Dependent Reactions of Photosynthesis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

By the end of this section, you will be able to:Explain how plants absorb energy from sunlightDescribe short and long wavelengths of lightDescribe how and where photosynthesis takes place within a plant

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
Tina B. Jones
Date Added:
08/16/2019
How chloroplasts keep plants running efficiently
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Chloroplasts harness sunlight to power all the processes that help plants grow. Like engines, they must carefully balance their fuel to run efficiently. In plants, that’s the ratio of ATP to NADPH, two forms of fuel produced by photosynthesis. But scientists have long known that ATP/NADPH ratios in chloroplasts fall short of the value required for plants to turn CO₂ into sugars. To find out how plants overcome this imbalance, researchers tracked ATP in Arabidopsis plants in real time using a fluorescent protein sensor. They found that immature chloroplasts in young seedlings imported cytosolic ATP for chloroplast biogenesis, using an abundance of ATP transporter proteins to do the job, but mature chloroplasts downregulated these transporters to minimize ATP importation. Instead of importing ATP to maintain fuel balance, chloroplasts exported NADPH in the form of malate..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Botany
Genetics
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/18/2022
Scientists discover energetics behind plant “breathing”
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Just as it does for humans, morning signals the time to wake up for plants. Sunlight triggers stomata, which are tiny pores on plant leaves, to open. This boosts photosynthesis by letting CO₂ in and O₂ out. Cells known as guard cells are the gatekeepers of this process, and opening the stomata requires a lot of energy. But scientists have long wondered where this energy comes from. Because while guard cells serve a key photosynthetic function, they appear less equipped than surrounding cells to perform photosynthesis. Now, researchers from HKU and ETH have discovered guard cells’ secret source of fuel. Experiments on Arabidopsis plants showed that guard cells import most of their energy in the form of sugar from surrounding mesophyll cells. Mesophyll cells contain many more chloroplasts than guard cells, helping them produce large amounts of sugar through photosynthesis..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Botany
Genetics
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/18/2022