
- Subject:
- Life Science
- Material Type:
- Module
- Author:
- Urbi Ghosh
- Date Added:
- 08/05/2019
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Explain the relationship between genotypes and phenotypes in dominant and recessive gene systemsDevelop a Punnett square to calculate the expected proportions of genotypes and phenotypes in a monohybrid crossExplain the purpose and methods of a test crossIdentify non-Mendelian inheritance patterns such as incomplete dominance, codominance, recessive lethals, multiple alleles, and sex linkage
By the end of this section, you will be able to:Explain Mendel’s law of segregation and independent assortment in terms of genetics and the events of meiosisUse the forked-line method and the probability rules to calculate the probability of genotypes and phenotypes from multiple gene crossesExplain the effect of linkage and recombination on gamete genotypesExplain the phenotypic outcomes of epistatic effects between genes
By the end of this section, you will be able to:Describe the scientific reasons for the success of Mendel’s experimental workDescribe the expected outcomes of monohybrid crosses involving dominant and recessive allelesApply the sum and product rules to calculate probabilities
The purpose with this module is to give you a better understanding on how genes function in organisms.it will expose you to Mendel’s breeding experiments, diseases that are triggered by genetic factors as well as provide knowledge on crop breeding and improvement in human health. The learning experiences you are about to encounter in this module will also serve as a foundation for further studies in advanced molecular biology and biochemistry. The module has been designed in such a way that your personal study skills will enable you work more effectively through the learning and assessment tasks. Although you might not have direct access to a laboratory where you would be able to study cells microscopically, the module will prepare you for such encounter as well as the application of the science process skills in the science classroom. We will also suggest a number of alternative options to practical work to you in this module.
The human genome project was one the most important human discoveries in the past 100 years. It creates a map of every gene in the human body. Through this lesson you will explore the history of the genome project, its applications today, and implications for your life. In addition, you will reflect on its impact on your life and determine if you think this is a positive or negative change. Based on your understanding, you will look at different perspectives with empathy to better understand how this technology impacts other people's lives.StandardsBIO.B.2.4Explain how genetic engineering has impacted the fields of medicine, forensics, and agriculture (e.g., selective breeding, gene splicing, cloning, genetically modified organisms, gene therapy).