Updating search results...

Search Resources

45 Results

View
Selected filters:
  • kinematics
The Cannonball Problem: Projectile Launched from an Angle
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This can be used a quiz, take home problem, end of unit assessment to determine students understanding of projectiles launched from an angle. They must also defend their mathematical analysis.

Subject:
Physics
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Author:
Anna Hanor
Date Added:
03/22/2022
College Physics
Unrestricted Use
CC BY
Rating
0.0 stars

This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Kim Dirks
Manjula Sharma
Paul Peter Urone
Roger Hinrichs
Date Added:
01/23/2012
Design and Manufacturing I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E.
From its beginnings in 1970, the 2.007 final project competition has grown into an Olympics of engineering.  See this MIT News story for more background, a photo gallery, and videos about this course.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Frey, Daniel
Gossard, David
Date Added:
02/01/2009
Dynamics and Control I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Kinematics. Force-momentum formulation for systems of particles and rigid bodies in planar motion. Work-energy concepts. Virtual displacements and virtual work. Lagrange's equations for systems of particles and rigid bodies in planar motion. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear multi-degree of freedom models of mechanical systems; matrix eigenvalue problems. Introduction to numerical methods and MATLAB® to solve dynamics and vibrations problems.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Hadjiconstantinou, Nicholas
Peacock, Thomas
Sarma, Sanjay
So, Peter
Date Added:
02/01/2007
Dynamics and Control I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics include kinematics; force-momentum formulation for systems of particles and rigid bodies in planar motion; work-energy concepts; virtual displacements and virtual work; Lagrange's equations for systems of particles and rigid bodies in planar motion; linearization of equations of motion; linear stability analysis of mechanical systems; free and forced vibration of linear multi-degree of freedom models of mechanical systems; and matrix eigenvalue problems. The class includes an introduction to numerical methods and using MATLAB® to solve dynamics and vibrations problems.
This version of the class stresses kinematics and builds around a strict but powerful approach to kinematic formulation which is different from the approach presented in Spring 2007. Our notation was adapted from that of Professor Kane of Stanford University.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Makris, Nicholas
Modarres-Sadeghi, Yahya
Sarma, Sanjay
So, Peter
Date Added:
09/01/2007
Engineering Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Gossard, David
Vandiver, J.
Date Added:
09/01/2011
General Physics Remote Lab Manual
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This remote learning lab manual was created to guide students in 200-level introductory/general physics courses toward meeting the first outcome in the science category of the Associate of Arts Oregon Transfer Degree:

Gather, comprehend, and communicate scientific and technical information in order to explore ideas, models, and solutions and generate further questions.

The lab design goal was to adapt existing F2F labs (already aligned to AAOT science outcome #1) for a remote learning environment without abandoning the pedagogical advantages provided by combining guided inquiry methods with specialized physics education equipment, such as digital sensors and unique demonstration apparatus. Therefore, many of the labs contain embedded videos of experiments being performed and links to open-access Google spreadsheets containing the data produced by equipment during the experiments. In many cases overlay effects have been added to videos to provide additional experimental parameters, direct students’ attention to important occurrences, or and assist with understanding of the experimental methods. The data in the spreadsheets has been edited to remove irrelevant data (e.g. acceleration data automatically collected by lab software before the release of a moving fan cart).
Students gain experience with well established physics concepts by applying them to create models used to make predictions. The need for assumptions in creating a model is explicitly addressed and students are asked to think critically about the affect of various assumptions on the validity of models in different situations. As in research science, experimental data are analyzed in order to produce results for comparison to prediction. Students are asked to think critically about differences between predictions and results in the context of model assumptions and measurement uncertainty

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
OpenOregon
Author:
Lawrence Davis
Date Added:
06/17/2021
Into Space!
Read the Fine Print
Educational Use
Rating
0.0 stars

While building and testing model rockets fueled by antacid tablets, students are introduced to the basic physics concepts on how rockets work. Students revise and improve their initial designs. Note: This activity is similar to the elementary-level film canister rockets activity, but adapted for middle school students.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Janet Yowell
Jeff White
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
10/14/2015
Introduction to Autonomous Robots
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This book introduces concepts in mobile, autonomous robotics to 3rd-4th year students in Computer Science or a related discipline. The book covers principles of robot motion, forward and inverse kinematics of robotic arms and simple wheeled platforms, perception, error propagation, localization and simultaneous localization and mapping. The cover picture shows a wind-up toy that is smart enough to not fall off a table just using intelligent mechanism design and illustrate the importance of the mechanism in designing intelligent, autonomous systems. This book is open source, open to contributions, and released under a creative common license.

Subject:
Applied Science
Computer Science
Material Type:
Textbook
Author:
Nikolaus Correll
Date Added:
11/09/2018
Introductory Dynamics: 2D Kinematics and Kinetics of Point Masses and Rigid Bodies
Unrestricted Use
CC BY
Rating
0.0 stars

Motion is all around us, the universe is full of moving matter and this motion is surprisingly predictable. The field of science and engineering that studies time-dependent motion in the presence of forces is called Dynamics. In this book we will introduce the core concepts in dynamics and provide a comprehensive toolset to predict and analyse planar 2D motion of point masses and rigid bodies. The material includes kinematic analysis, Newton’s laws, Euler’s laws, the equations of motion, work, energy, impulse and momentum. Vector-based methods are discussed for systematically solving essentially any problem in 2D dynamics. The book provides a bachelor level introduction for any science and engineering student that can serve as a basis for more advanced courses in dynamics.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Delft University of Technology
Author:
Peter G. Steeneken
Date Added:
01/18/2024
Kinematics test
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Kinematics test Grade 10made of 22 questions about acceleration and velocity

Subject:
Physics
Material Type:
Lesson Plan
Author:
Mostafa Soukarieh
Date Added:
09/06/2018
Lab: Horizontally Launched Projectiles (with uncertainty analysis)
Read the Fine Print
Educational Use
Rating
0.0 stars

This is a version of the time-tested lab where students roll a ball off a table top and use kinematics in two dimensions to try to predict where the ball will land. While many versions of this lab have been previously published, in this version students determine the uncertainty of all measurements and uncertainty of their prediction. The techniques and vocabulary are consistent with the Introduction to Measurement packet.

Subject:
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
ComPADRE Digital Library
Author:
Peter Bohacek
Date Added:
08/28/2012
Maze Game
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.

Subject:
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
10/30/2006
Mechanics Map Open Mechanics Textbook
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Open textbook in statics and dynamics for engineering undergraduates. Covers particles and rigid bodies (extended bodies), structures (trusses), simple machines, kinematics, and kinetics, as well as introductory vibrations. Includes text, videos, images, and worked examples (written and video).

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Textbook
Provider:
Adaptive Map Digital Textbook Project
Author:
Agnes d'Entremont
Douglas Miller
Joan Kowalski
Majod Chatsaz
Jacob Moore
Date Added:
03/11/2019
Mechanics of Fluids
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an advanced subject in fluid and continuum mechanics. The course content includes kinematics, macroscopic balances for linear and angular momentum, stress tensors, creeping flows and the lubrication approximation, the boundary layer approximation, linear stability theory, and some simple turbulent flows.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Smith, Kenneth
Date Added:
02/01/2006
Modeling Dynamics and Control II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is the second subject of a two-term sequence on modeling, analysis and control of dynamic systems. Topics covered include:

kinematics and dynamics of mechanical systems, including rigid bodies in plane motion
linear and angular momentum principles
impact and collision problems
linearization about equilibrium
free and forced vibrations
sensors and actuators
control of mechanical systems
integral and derivative action, lead and lag compensators
root-locus design methods
frequency-domain design methods
applications to case-studies of multi-domain systems

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Akylas, Triantaphyllos
Haller, George
So, Peter
Date Added:
02/01/2003
Motion in 2D
Unrestricted Use
CC BY
Rating
0.0 stars

Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Subject:
Applied Science
Computing and Information
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Interactive
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Sam Reid
Date Added:
11/15/2007
Motion in 2D (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Sam Reid
Date Added:
07/02/2009