Updating search results...

Search Resources

8 Results

View
Selected filters:
  • inner-ear
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, Animal Structure and Function, Sensory Systems, Hearing and Vestibular Sensation
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe the relationship of amplitude and frequency of a sound wave to attributes of soundTrace the path of sound through the auditory system to the site of transduction of soundIdentify the structures of the vestibular system that respond to gravity

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
Modeling Issues in Speech and Hearing
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the theory and practice of scientific modeling in the context of auditory and speech biophysics. Based on seminar-style discussions of the research literature, the class draws on examples from hearing and speech, and explores general, meta-theoretical issues that transcend the particular subject matter. Examples include: What is a model? What is the process of model building? What are the different approaches to modeling? What is the relationship between theory and experiment? How are models tested? What constitutes a good model?

Subject:
Applied Science
Biology
Engineering
Health, Medicine and Nursing
Life Science
Mathematics
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Melcher, Jennifer
Shera, Christopher
Date Added:
02/01/2006
My Mechanical Ear Can Hear!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to various types of hearing impairments and the types of biomedical devices that engineers have designed to aid people with this physical disability.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Emily Weller
Jessica Todd
Lesley Herrmann
Malinda Schaefer Zarske
Sara Born
Date Added:
09/18/2014
The Peripheral Auditory System
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, experimental approaches to the study of hearing and deafness are presented through lectures, laboratory exercises and discussions of the primary literature on the auditory periphery. Topics include inner-ear development, functional anatomy of the inner ear, cochlear mechanics and micromechanics, mechano-electric transduction by hair cells, outer hair cells' electromotility and the cochlear amplifier, otoacoustic emissions, synaptic transmission, stimulus coding in auditory nerve responses, efferent control of cochlear function, damage and repair of hair-cell organs, and sensorineural hearing loss.

Subject:
Anatomy/Physiology
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Adams, Joe
Liberman, Charlie
Date Added:
09/01/2005
Physiology of the Ear
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders.

Subject:
Anatomy/Physiology
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Guinan, John
Rosowski, John
Shera, Christopher
Date Added:
09/01/2004