Search Resources

5 Results

View
Selected filters:
  • Functional Analysis
Functional analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

As taught in 2006-2007 and 2007-2008.

Functional analysis begins with a marriage of linear algebra and metric topology. These work together in a highly effective way to elucidate problems arising from differential equations. Solutions are sought in an infinite dimensional space of functions.

This module paves the way by establishing the principal theorems (all due in part to the great Polish mathematician Stefan Banach) and exploring their diverse consequences. Topics to be covered will include:

– norm topology and topological isomorphism;
– boundedness of operators;
– compactness and finite dimensionality;
– extension of functionals;
– weak*-compactness;
– sequence spaces and duality;
– basic properties of Banach algebras.

Suitable for: Undergraduate students Level Four

Dr Joel F. Feinstein
School of Mathematical Sciences

Dr Joel Feinstein is an Associate Professor in Pure Mathematics at the University of Nottingham. After reading mathematics at Cambridge, he carried out research for his doctorate at Leeds. He held a postdoctoral position in Leeds for one year, and then spent two years as a lecturer at Maynooth (Ireland) before taking up a permanent position at Nottingham. His main research interest is in functional analysis, especially commutative Banach algebras.

Dr Feinstein has published two case studies on his use of IT in the teaching of mathematics to undergraduates. In 2009, Dr Feinstein was awarded a University of Nottingham Lord Dearing teaching award for his popular and successful innovations in this area.

Subject:
Mathematics
Material Type:
Full Course
Lecture
Module
Syllabus
Provider:
University of Nottingham
Author:
Dr Joel Feinstein
Date Added:
03/23/2017
Functional analysis 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This is a module framework. It can be viewed online or downloaded as a zip file.

As taught Autumn semester 2010.

Functional analysis begins with a marriage of linear algebra and metric topology. These work together in a highly effective way to elucidate problems arising from differential equations. Solutions are sought in an infinite dimensional space of functions.

This module paves the way by establishing the principal theorems (all due in part to the great Polish mathematician Stefan Banach) and exploring their diverse consequences. Topics to be covered will include:

– norm topology and topological isomorphism;
– boundedness of operators;
– compactness and finite dimensionality;
– extension of functionals;
– weak*-compactness;
– sequence spaces and duality;
– basic properties of Banach algebras.

Suitable for: Undergraduate students Level Four

Dr Joel F. Feinstein
School of Mathematical Sciences

Dr Joel Feinstein is an Associate Professor in Pure Mathematics at the University of Nottingham. After reading mathematics at Cambridge, he carried out research for his doctorate at Leeds. He held a postdoctoral position in Leeds for one year, and then spent two years as a lecturer at Maynooth (Ireland) before taking up a permanent position at Nottingham. His main research interest is in functional analysis, especially commutative Banach algebras.

Dr Feinstein has published two case studies on his use of IT in the teaching of mathematics to undergraduates. In 2009, Dr Feinstein was awarded a University of Nottingham Lord Dearing teaching award for his popular and successful innovations in this area.

Subject:
Mathematics
Material Type:
Syllabus
Provider:
University of Nottingham
Author:
Dr Joel Feinstein
Date Added:
03/23/2017
Measure, Integration & Real Analysis
Conditional Remix & Share Permitted
CC BY-NC
Rating

This open access textbook was published in Springer's Graduate Texts in Mathematics series. The book introduces students to the fundamental theory of measure, integration, real analysis, and functional analysis. Content is carefully curated to suit a single course, or a two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics.

Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on R^n.

Chapters on Banach spaces, L^p spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures.

Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability.

Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics.

Subject:
Mathematics
Material Type:
Textbook
Author:
Sheldon Axler
Date Added:
06/10/2020
Mini Car Design Challenge
Conditional Remix & Share Permitted
CC BY-NC
Rating

This engineering design challenge is a great hands-on activity that utilizes the engineering design process, 3D modeling, and 3D printing technology. The challenge can be completed individually or in groups of 2 to 3. Students will work to complete the following challenge: Using the design process, design, document, model, and produce a toy car with interchangeable parts.

Subject:
Engineering
Material Type:
Activity/Lab
Lesson Plan
Author:
Zach Potter
Date Added:
12/05/2018
Stochastic Evolution Equations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

The lectures are at a beginning graduate level and assume only basic familiarity with Functional Analysis and Probability Theory. Topics covered include: Random variables in Banach spaces: Gaussian random variables, contraction principles, Kahane-Khintchine inequality, Anderson’s inequality. Stochastic integration in Banach spaces I: γ-Radonifying operators, γ-boundedness, Brownian motion, Wiener stochastic integral. Stochastic evolution equations I: Linear stochastic evolution equations: existence and uniqueness, Hölder regularity. Stochastic integral in Banach spaces II: UMD spaces, decoupling inequalities, Itô stochastic integral. Stochastic evolution equations II: Nonlinear stochastic evolution equations: existence and uniqueness, Hölder regularity.

Subject:
Statistics and Probability
Material Type:
Full Course
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Delft University Opencourseware
Date Added:
02/16/2011