Updating search results...

Search Resources

15 Results

View
Selected filters:
  • cytoskeleton
Abl kinase’s disordered region plays roles in protein function and stability
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"The non-receptor tyrosine kinase Abelson (Abl) is a key player in oncogenesis, causing diseases including chronic myelogenous and acute lymphoblastic leukemia. Drugs targeting Abl kinase activity serve as paradigms of targeted therapy. Drosophila is an ideal model for studying Abl’s function because there is only a single fly Abl family member. In flies, Abl is essential for embryonic morphogenesis, playing diverse roles in embryonic and adult viability. To examine the role of the intrinsically disordered region (IDR) of Abl, researchers deleted the IDR in Drosophila. They found that Abl lacking the IDR was not able to rescue the roles of Abl in viability and embryonic morphogenesis. The IDR was also essential for cell shape changes and cytoskeletal regulation during embryonic morphogenesis and, surprisingly, for modulating protein stability..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/16/2021
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Cell, Cell Structure, The Cytoskeleton
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe the cytoskeletonCompare the roles of microfilaments, intermediate filaments, and microtubulesCompare and contrast cilia and flagellaSummarize the differences among the components of prokaryotic cells, animal cells, and plant cells

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
Cytoskeletal signaling events lie at the nexus of development and cancer
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Our cells’ behavior depends on their underlying structure – the cytoskeleton. A dynamic network of protein filaments and tubules, the cytoskeleton drives motion. It is also central to cell development – and cancer. One protein at the center of cytoskeletal events is Merlin. Like other FERM-family proteins, Merlin mediates interactions between actin and transmembrane receptors, translating signaling into motion, adhesion, and growth regulation. Because it regulates such essential pathways, Merlin has a dual role in human biology. Its connection to the cytoskeleton is essential for embryonic development. and the signaling pathways it orchestrates are required for cell differentiation in later stages of development. At the same time, Merlin also maintains appropriate cell signaling levels and growth, preventing cancer progression. Further studies will shed light on Merlin's role in different contexts, improving our understanding of therapeutic strategies for disorders of both development and cancer..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
06/23/2020
Immune Cell Migration: On the Move in Response to Pathogens and Cancer Immunotherapy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The mammalian immune system is sometimes called a “liquid organ,” capable of rapidly initiating and then resolving potent responses to pathogens at almost any location in the organism. What protein machinery drives immune cells’ rapid migration? How do cells make pathfinding decisions around barriers? How do they find rare pathogens or target cells in complex environments?
This course will begin by examining the general immunological functions of two major immune cell types—T cells and dendritic cells. Through our readings and discussions, we will examine the connections between immunotherapy as an emerging treatment modality for a variety of cancers and the migration of immune cells.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fessenden, Timothy
Date Added:
09/01/2021
MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Glioblastoma (GBM), an aggressive cancer in the brain or spinal cord, is a devastating diagnosis. Although therapies exist, GBM has a poor prognosis, with a median survival of only 14-15 months after diagnosis. Key to its aggressiveness is the degree to which migrating GBM cells infiltrate adjacent brain tissue. GBM cells express the protein MACC1, which is a marker of metastasis and tumor cell migration. Unfortunately, how GBM cells learn to migrate is unclear. A recent study used live-cell and atomic force microscopy to evaluate cell migration and mechanical properties of GBM cells overexpressing MACC1. The results showed that MACC1 increased the migratory speed and elasticity of GBM cells while it decreased cell-cell adhesion and inhibited aggregation. MACC1-overexpressing cells also had specific increases in protrusive actin, allowing the cells to adhere to laminin..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/30/2020
Molecular, Cellular, and Tissue Biomechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course develops and applies scaling laws and the methods of continuum and statistical mechanics to biomechanical phenomena over a range of length scales, from molecular to cellular to tissue or organ level.

Subject:
Applied Science
Biology
Engineering
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Grodzinsky, Alan
Kamm, Roger
Date Added:
02/01/2015
Neuroprotective functions of the HDAC6 zinc finger ubiquitin-binding domain
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Alzheimer’s disease and similar neurodegenerative diseases involve aggregation of the protein Tau and disruption of cell structural networks. The protein HDAC6 helps clear Tau aggregates and regulate the cytoskeleton, thus exerting neuroprotective effects. HDAC6’s catalytic domains mediate some of these functions, but the roles of another domain, the zinc finger ubiquitin-binding domain (ZnF UBP), are less understood. A recent study investigated the effects of purified HDAC6 ZnF UBP on cultured neuronal cells. The researchers found that HDAC6 ZnF UBP was nontoxic to cells, and cell imaging showed that it promoted reorganization of the cytoskeletal components actin and tubulin in ways that likely support neuron growth and migration. Localization of the protein ApoE in cell nuclei was increased, indicating improved neuronal health..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/14/2021
Nuclei go with the flow to stay in sync
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Like a symphony, the earliest moments of life play out with incredible precision. Take the fruit fly embryo. Unlike a human embryo, where a single cell becomes many through repeated rounds of cell division, the early embryo of the fruit fly starts as a single nucleus that then divides into thousands of nuclei, all within the same cell. During these divisions, the nuclei must navigate through the embryo to highly specific locations before they become separated into the thousands of cells that will eventually develop into an adult fly. A new report in Cell describes how these nuclei steer themselves to where they need to be. To uncover the mechanisms that drive nuclear positioning and cell cycle synchronization, the team developed state-of-the-art imaging and computational tools to manipulate and track cell cycle and cytoskeletal dynamics in early embryogenesis. Additionally, the team used optogenetic methods to manipulate cytoskeletal contractility with spatial and temporal accuracy..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/20/2019
PIM1 accelerates prostate cancer cell motility by phosphorylating actin capping proteins
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Prostate cancer is one of the prevalent forms of cancer in men around the world. Prostate tumors become especially fatal when they spread to one and other vital organs. The main forces driving cell motility are the constant polymerization and depolymerization of actin filaments which lead to changes in cellular protrusions. This process is regulated by actin-binding proteins, such as capping proteins, which bind to the fast-growing ends of actin filaments. A new study shows that these capping proteins are substrates for cancer-inducing PIM kinases, proteins whose overexpression promotes cancer cell survival and motility. Phosphorylation of capping proteins decreases their ability to protect actin filament ends from disassembly, leading to enhanced cell motility. while PIM inhibitors or capping protein mutations have the opposite effect, reducing cell migration..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/11/2020
Phosphoinositide Signaling Modulates Microglial Phagocytosis in Alzheimer’s disease
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Alzheimer’s disease affects 1 in 3 senior citizens worldwide. The hallmark of Alzheimer’s is the accumulation of abnormal protein deposits, including Tau and amyloid β, in neurons and glial cells in the brain. These deposits disrupt signal transduction by affecting lipid-based secondary messengers in the brain called phosphatidylinositols (PIs). PIs drive the reorganization of the cytoskeleton in glial cells, affecting many cellular processes. These dynamic molecules are tightly regulated by their phosphorylation status, which influences their abundance and localization. Because microglia in the brain must respond to chemotactic and pro-inflammatory signals, disrupting PIs alters microglial function, resulting in hyperactivation and inflammation. PI signaling typically drives actin remodeling to modulate phagocytosis, allowing glial cells to clear amyloid β aggregates and debris. Unfortunately, extensive amyloid β accumulation disrupts PI signaling, altering cytoskeleton regulation..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/16/2021
Protein interactions offer new insight into cell movement required for healing wounds
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Cell movement, especially among fibroblasts and astrocytes, is critical for wound healing and scarring. Cells create protrusions toward their direction of motion on one end while retracting similar projections on the other end. It’s a cyclical process coordinated by various proteins on the cell surface, such as αVβ3 integrin, a protein found in reactive astrocytes that is activated through its interaction with the neuronal protein Thy-1/CD90. But exactly how Thy-1-integrin binding controls cell movement has remained unclear. Now, new research reveals the important role played by the transmembrane protein Syndecan-4, another Thy-1-binding protein, and the scaffold protein PAR-3. Experiments showed that Thy-1 promotes an interaction between Syndecan-4 and PAR-3. When this interaction was blocked by decreasing Syndecan-4 or PAR-3, cells showed limited mobility, as they were unable to disassemble the protrusions that kept them locked in place..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/12/2020
Using mechanobiology and materials methods in epithelial-mesenchymal transition research
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Cancer-related mortality, a leading cause of death in the US, is driven by tumor invasion and metastasis. Implicated in these processes is epithelial-to-mesenchymal transition, or EMT. EMT drives invasion through a dramatic reorganization of a cell's cytoskeleton and the extracellular matrix. Because EMT is a rare event, undergone by a few abnormal cells, it is difficult to view directly in a patient. But new research methods are providing a lens into this critical process. Culturing cells on planar surfaces is revealing how their EMT behavior is coordinated and driven by leader cells. Research on the protein vimentin highlights its role in enabling cells to contort during migration or proliferation. Other studies examine how topographically patterning culture surfaces changes the behaviors of cells as they slip into and out of EMT. And 3D matrices are being used to examine the dissemination and disorganization of multicellular clusters..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
03/11/2021