Updating search results...

Search Resources

2 Results

View
Selected filters:
  • conservation-principles
Marine Hydrodynamics (13.021)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.
This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005, ocean engineering became part of Course 2 (Department of Mechanical Engineering), and this subject was renumbered 2.20.

Subject:
Applied Science
Engineering
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Yue, Dick
Date Added:
02/01/2005
Unified Engineering I, II, III, & IV
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subject:
Applied Science
Business and Communication
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Craig, Jennifer
Drela, Mark
Hall, Steven
Lagace, Paul
Lundqvist, Ingrid
Naeser, Gustaf
Perry, Heidi
Radovitzky, Raúl
Waitz, Ian
Young, Peter
Date Added:
09/01/2005