Updating search results...

Search Resources

12 Results

View
Selected filters:
  • chemistry-inquiry-lessons
Acid-Base Solutions
Unrestricted Use
CC BY
Rating
0.0 stars

How do strong and weak acids differ? Use lab tools on your computer to find out! Dip the paper or the probe into solution to measure the pH, or put in the electrodes to measure the conductivity. Then see how concentration and strength affect pH. Can a weak acid solution have the same pH as a strong acid solution?

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Date Added:
09/01/2010
Atomic Interactions
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Jack Barbera
John Blanco
Kathy Perkins
Kelly Lancaster
Noah Podolefsky
Wendy Adams
Date Added:
08/01/2009
Balancing Chemical Equations
Unrestricted Use
CC BY
Rating
0.0 stars

How do you know if a chemical equation is balanced? What can you change to balance an equation? Play a game to test your ideas!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Date Added:
08/15/2011
Build a Molecule
Unrestricted Use
CC BY
Rating
0.0 stars

Starting from atoms, see how many molecules you can build. Collect your molecules and see them in 3D!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Christine Denison
Emily Moore
John Blanco
Jonathan Olson
Kathy Perkins
Kelly Lancaster
Sam Reid
Date Added:
06/27/2011
Build an Atom
Unrestricted Use
CC BY
Rating
0.0 stars

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
John Blanco
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Sam Reid
Suzanne Brahmia
Date Added:
07/13/2011
Concord Consortium: Atomic Structure
Read the Fine Print
Rating
0.0 stars

This interactive, scaffolded activity allows students to build an atom within the framework of a newer orbital model. It opens with an explanation of why the Bohr model is incorrect and provides an analogy for understanding orbitals that is simple enough for grades 8-9. As the activity progresses, students build atoms and ions by adding or removing protons, electrons, and neutrons. As changes are made, the model displays the atomic number, net charge, and isotope symbol. Try the "Add an Electron" page to build electrons around a boron nucleus and see how electrons align from lower-to-higher energy. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering. The models are all freely accessible. Users may register for additional free access to capture data and store student work products.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/06/2011
Concord Consortium: Chemical Bonds
Read the Fine Print
Rating
0.0 stars

This interactive activity helps learners visualize the role of electrons in the formation of ionic and covalent chemical bonds. Students explore different types of chemical bonds by first viewing a single hydrogen atom in an electric field model. Next, students use sliders to change the electronegativity between two atoms -- a model to help them understand why some atoms are attracted. Finally, students experiment in making their own models: non-polar covalent, polar covalent, and ionic bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Counting Calories
Read the Fine Print
Educational Use
Rating
0.0 stars

The students discover the basics of heat transfer in this activity by constructing a constant pressure calorimeter to determine the heat of solution of potassium chloride in water. They first predict the amount of heat consumed by the reaction using analytical techniques. Then they calculate the specific heat of water using tabulated data, and use this information to predict the temperature change. Next, the students will design and build a calorimeter and then determine its specific heat. After determining the predicted heat lost to the device, students will test the heat of solution. The heat given off by the reaction can be calculated from the change in temperature of the water using an equation of heat transfer. They will compare this with the value they predicted with their calculations, and then finish by discussing the error and its sources, and identifying how to improve their design to minimize these errors.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Prager
Janet Yowell
Malinda Zarske
Megan Schroeder
Date Added:
09/18/2014
Creepy Silly Putty
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about viscoelastic material behavior, such as strain rate dependence and creep, by using silly putty, an easy-to-make polymer material. They learn how to make silly putty, observe its behavior with different strain rates, and then measure the creep time of different formulations of silly putty. By seeing the viscoelastic behavior of silly putty, students start to gain an understanding of how biological materials function. Students gain experience in data collection, graph interpretation, and comparison of material properties to elucidate material behavior. It is recommended that students perform Part 1of the activity first (making and playing with silly putty), then receive the content and concept information in the associated lesson, and then complete Part 2 of the activity (experimenting and making measurements with silly putty).

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Denise W. Carlson
Marissa H. Forbes
Date Added:
09/18/2014
Modeling the Process of Mining Silicon Through a Single Displacement / Redox Reaction
Unrestricted Use
CC BY
Rating
0.0 stars

The heart of this activity is a laboratory investigation that models the production of silicon. Students learn about silicon and its sources, uses, properties, importance in the fields of photovoltaics (solar cells/renewable energy) and integrated circuits industries, and, to a limited extent, environmental impact of silicon production.

Subject:
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Alexis Durow
Andrea Vermeer
National Renewable Energy Lab (NREL)
Date Added:
06/19/2012
Molecules: The Movement of Atoms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as engineers to learn about the properties of molecules and how they move in 3D space through the use of LEGO MINDSTORMS(TM) NXT robotics. They design and build molecular models and use different robotic sensors to control the movement of the molecular simulations. Students learn about the size of atoms, Newman projections, and the relationship of energy and strain on atoms. This unique modular modeling activity is especially helpful in providing students with a spatial and tactile understanding of how molecules behave.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jennifer S. Haghpanah
Jill Fonda
Jin Kim Montclare
Noam Pillischer
Date Added:
09/18/2014
Using a mass balance model to understand carbon dioxide and its connection to global warming
Unrestricted Use
CC BY
Rating
0.0 stars

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Robert MacKay
SERC - Teaching Quantitative Skills in Geoscience Collection
Date Added:
06/19/2012