Updating search results...

Search Resources

40 Results

View
Selected filters:
  • chemical-engineering
Biochemical Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the interaction of chemical engineering, biochemistry, and microbiology. Mathematical representations of microbial systems are featured among lecture topics. Kinetics of growth, death, and metabolism are also covered. Continuous fermentation, agitation, mass transfer, and scale-up in fermentation systems, and enzyme technology round out the subject material.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Jones Prather, Kristala
Date Added:
02/01/2005
Chemical Wonders
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to chemical engineering and learn about its many different applications. They are provided with a basic introduction to matter and its different properties and states. An associated hands-on activity gives students a chance to test their knowledge of the states of matter and how to make observations using their five senses: touch, smell, sound, sight and taste.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Date Added:
09/18/2014
Counting Calories
Read the Fine Print
Educational Use
Rating
0.0 stars

The students discover the basics of heat transfer in this activity by constructing a constant pressure calorimeter to determine the heat of solution of potassium chloride in water. They first predict the amount of heat consumed by the reaction using analytical techniques. Then they calculate the specific heat of water using tabulated data, and use this information to predict the temperature change. Next, the students will design and build a calorimeter and then determine its specific heat. After determining the predicted heat lost to the device, students will test the heat of solution. The heat given off by the reaction can be calculated from the change in temperature of the water using an equation of heat transfer. They will compare this with the value they predicted with their calculations, and then finish by discussing the error and its sources, and identifying how to improve their design to minimize these errors.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Prager
Janet Yowell
Malinda Zarske
Megan Schroeder
Date Added:
09/18/2014
Down with the Clip!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students see how surface tension can enable light objects (paper clips, peppercorns) to float on an island of oil in water, and subsequently sink when the surface tension of the oil/water interface is reduced by the addition of a surfactant; such as ordinary dish soap.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ryan Cates
Date Added:
09/18/2014
Dyeing to Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experiment with various ways to naturally dye materials using sources found in nature—roots, leaves, seeds, spices, etc.—as well as the method of extracting dyes. Then they analyze various materials using statistical methods and tackle an engineering design challenge—to find dyes that best suit the needs of a startup sustainable clothing company.

Subject:
Chemistry
Mathematics
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Amanda Grear
Brett Doudican
Carly Monfort
Craig George
Date Added:
10/18/2018
Engineering Polymers from Potatoes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to polymer science and take on the role of chemical engineers to create and test a plastic made from starch. After testing their potato-based plastic, students design a product that takes advantage of the polymer’s unique properties. At the end of the engineering design process, students present their product in a development “pitch” that communicates their idea to potential investors.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Rebecca Hooper
Robin Lewis
Date Added:
02/12/2019
Environmental Conflict
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the complex interrelationships among humans and natural environments, focusing on non-western parts of the world in addition to Europe and the United States. It uses environmental conflict to draw attention to competing understandings and uses of "natureâ€ as well as the local, national and transnational power relationships in which environmental interactions are embedded. In addition to utilizing a range of theoretical perspectives, this subject draws upon a series of ethnographic case studies of environmental conflicts in various parts of the world.

Subject:
Applied Science
Engineering
Environmental Science
Political Science
Social Science
Material Type:
Full Course
Author:
Christine Walley
Date Added:
01/01/2005
Environmental Engineering and Water Chemistry
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the fundamentals of environmental engineering as well as the global air, land and water quality concerns facing today's environmental engineers. After a lesson and activity to introduce environmental engineering, students learn more about water chemistry aspects of environmental engineering. Specifically, they focus on groundwater contamination and remediation, including sources of contamination, adverse health effects of contaminated drinking water, and current and new remediation techniques. Several lab activities provide hands-on experiences with topics relevant to environmental engineering concerns and technologies, including removal efficiencies of activated carbon in water filtration, measuring pH, chromatography as a physical separation method, density and miscibility.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014
Environmental Struggles
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class explores the interrelationship between humans and natural environments. It does so by focusing on conflict over access to and use of the environment as well as ideas about "natureâ€ in various parts of the world.

Subject:
Applied Science
Engineering
Environmental Science
Political Science
Social Science
Material Type:
Full Course
Author:
Christine Walley
Date Added:
01/01/2004
Ethics for Engineers: Artificial Intelligence
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Artificial Intelligence (AI), and the algorithmic judgment at its core, is developing at breakneck speed. This version of the popular Ethics for Engineers course focuses on the ethics issues involved in the latest developments of computer science.

Subject:
Applied Science
Arts and Humanities
Computer Science
Engineering
Philosophy
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Doneson, Daniel
Trout, Bernhardt
Date Added:
02/01/2020
Exploring the Lotus Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students test and observe the "self-cleaning" lotus effect using a lotus leaf and cloth treated with a synthetic lotus-like superhydrophobic coating. They also observe the Wenzel and Cassie Baxter wetting states by creating and manipulating condensation droplets on the leaf surface. They consider the real-life engineering applications for these amazing water-repellent and self-cleaning properties.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Fundamentals of Ammonia  synthesis in Chemical Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of Ammonia Synthesis is a meticulously designed resource that was written to provide both students and educators with an amazing learning experience.The topic is structured into five captivating lessons, each carefully designed to understand the complexity of ammonia production. Beginning with the first lesson where we studied the process steps involved in ammonia synthesis, to lesson two where we explored the concept of Synthesis gas production by steam reforming with emphasis on natural gas reforming. In lesson three we analyzed the various operating variables that influence the production of synthesis. In lessons four and five we studied the purification of synthesis and how it is used for the production of ammonia. Each lesson comes with a quiz to reinforce what was learned.Our resource doesn't just serve as class notes; it's a gateway to a deeper understanding of chemical engineering principles. Whether you're a student seeking to grasp the fundamentals or an educator looking to enrich your teaching arsenal, "Fundamentals of Ammonia Synthesis" promises an enriching educational journey filled with insight, discovery, and practical application. Join us as we unlock the secrets of ammonia synthesis and pave the way for a brighter future in chemical engineering.

Subject:
Applied Science
Engineering
Material Type:
Unit of Study
Author:
Lotachukwu Ernest Eze
Date Added:
03/13/2024
Get Your Charge Away from Me!
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity is an easy way to demonstrate the fundamental properties of polar and non-polar molecules (such as water and oil), how they interact, and the affect surfactants (such as soap) have on their interactions. Students see the behavior of oil and water when placed together, and the importance soap (a surfactant) plays in the mixing of oil and water which is why soap is used every day to clean greasy objects, such as hands and dishes. This activity is recommended for all levels of student, grades 3-12, as it can easily be scaled to meet any desired level of difficulty.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ryan Cates
Date Added:
09/18/2014
Get in My Body: Drug Delivery
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to think as biomedical engineers and brainstorm ways to administer medication to a patient who is unable to swallow. They learn about the advantages and disadvantages of current drug delivery methods—oral, injection, topical, inhalation and suppository—and pharmaceutical design considerations, including toxicity, efficacy, size, solubility/bioavailability and drug release duration. They apply their prior knowledge about human anatomy, the circulatory system, polymers, crystals and stoichiometry to real-world biomedical applications. A Microsoft® PowerPoint® presentation and worksheets are provided. This lesson prepares students for the associated activity in which they create and test large-size drug encapsulation prototypes to provide the desired delayed release and duration timing.

Subject:
Biology
Career and Technical Education
Chemistry
Life Science
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrea Lee
Megan Ketchum
Date Added:
02/17/2017
Grow Your Own Algae!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover how tiny microscopic plants can remove nutrients from polluted water. They also learn how to engineer a system to remove pollutants faster and faster by changing the environment for the algae.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Lee Martinez
Tapas K. Das
Date Added:
09/18/2014
Hot Potato, Cool Foil
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore material properties by applying some basic principles of heat transfer. They use calorimeters to determine the specific heat of three substances: aluminum, copper and another of their choice. Each substance is cooled in a freezer and then placed in the calorimeter. The temperature change of the water and the substance are used in heat transfer equations to determine the specific heat of each substance. The students compare their calculated values with tabulated data.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Prager
Janet Yowell
Malinda Zarske
Megan Schroeder
Date Added:
09/18/2014
In and Out Reactor
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about material balances, a fundamental concept of chemical engineering. They use stoichiometry to predict the mass of carbon dioxide that escapes after reacting measured quantities of sodium bicarbonate with dilute acetic acid. Students then produce the reactions of the chemicals in a small reactor made from a plastic water bottle and balloon.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Prager
Megan Schroeder
Stephanie Rivale
Date Added:
09/18/2014
Information Sources in Mechanical Engineering – Simple Book Publishing
Unrestricted Use
CC BY
Rating
0.0 stars

This book is a cloned version of Information Sources in Chemical and Materials Engineering by Alison Henry, published using Pressbooks under a CC BY (Attribution) license. It may differ from the original.

Subject:
Applied Science
Engineering
Material Type:
Reading
Student Guide
Provider:
Open Education Alberta
Author:
Alison Henry
Date Added:
11/15/2021
Investigating Contact Angle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe how water acts differently when placed on hydrophilic and hydrophobic surfaces. They determine which coatings are best to cause surfaces to shed water quickly or reduce the "fogging" caused by condensation.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jean Stave
Professor Chuan-Hua Chen
Date Added:
09/18/2014
Let's Get Dirty
Read the Fine Print
Educational Use
Rating
0.0 stars

In a very hands-on activity, students observe and feel the differences between two cleaning methods, with and without hand soap, using coffee grounds to represent "dirt."Most of the dirt and bacteria on our hands is encased in a thin layer of oil, so because of the properties of oil and water, cleaning your hands with water alone has little effect when trying to remove the dirt. This activity demonstrates the importance of using a surfactant, such as hand soap, when washing your hands.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ryan Cates
Date Added:
09/18/2014