Updating search results...

Search Resources

9 Results

View
Selected filters:
  • ampere-s-law
Ampere's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson begins with a demonstration introducing students to the force between two current carrying loops, comparing the attraction and repulsion between the loops to that between two magnets. After formal lecture on Ampere's law, students begin to use the concepts to calculate the magnetic field around a loop. This is applied to determine the magnetic field of a toroid, imagining a toroid as a looped solenoid.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Electricity and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.
Acknowledgements
The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. Many people have contributed to the development of the course materials. (PDF)

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Belcher, John
Dourmashkin, Peter
Feld, Michael
Hudson, Eric
Joannopoulos, John
Knuteson, Bruce
Stephans, George
Date Added:
02/01/2005
Electromagnetic Interactions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation.
Acknowledgments
Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subject:
Applied Science
Engineering
Environmental Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Freidberg, Jeffrey
Date Added:
09/01/2005
The Energy of Light
Read the Fine Print
Educational Use
Rating
0.0 stars

In this introduction to light energy, students learn about reflection and refraction as they learn that light travels in wave form. Through hands-on activities, they see how prisms, magnifying glasses and polarized lenses work. They also gain an understanding of the colors of the rainbow as the visible spectrum, each color corresponding to a different wavelength.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Cooper
Mandek Richardson
Patricio Rocha
Tapas K. Das
Date Added:
09/18/2014
MRI Safety Grand Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given an engineering challenge: A nearby hospital has just installed a new magnetic resonance imaging facility that has the capacity to make 3D images of the brain and other body parts by exposing patients to a strong magnetic field. The hospital wishes for its entire staff to have a clear understanding of the risks involved in working near a strong magnetic field and a basic understanding of why those risks occur. Your task is to develop a presentation or pamphlet explaining the risks, the physics behind those risks, and the safety precautions to be taken by all staff members. This 10-lesson/4-activity unit was designed to provide hands-on activities to teach end-of-year electricity and magnetism topics to a first-year accelerated or AP physics class. Students learn about and then apply the following science concepts to solve the challenge: magnetic force, magnetic moments and torque, the Biot-Savart law, Ampere's law and Faraday's law. This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Physics II: Electricity & Magnetism with an Experimental Focus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied.
Acknowledgements
Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Dourmashkin, Peter
Roland, Gunther
Date Added:
02/01/2005
Physics II: Electricity and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell's equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory.
Acknowledgments
Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Physics Department affiliated with course 8.022. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sciolla, Gabriella
Date Added:
09/01/2004
Physics II: Electricity and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.
Staff List
Visualizations:  
Prof. John Belcher
Instructors:  
Dr. Peter Dourmashkin  
Prof. Bruce Knuteson  
Prof. Gunther Roland  
Prof. Bolek Wyslouch  
Dr. Brian Wecht  
Prof. Eric Katsavounidis  
Prof. Robert Simcoe  
Prof. Joseph Formaggio
Course Co-Administrators:  
Dr. Peter Dourmashkin  
Prof. Robert Redwine
Technical Instructors:  
Andy Neely  
Matthew Strafuss
Course Material:  
Dr. Peter Dourmashkin  
Prof. Eric Hudson  
Dr. Sen-Ben Liao
Acknowledgements
The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. Many people have contributed to the development of the course materials. (PDF)

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Faculty, Lecturers, and Technical Staff, Physics Department
Date Added:
02/01/2007
Physics II: Electricity and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electricity and magnetism dominate much of the world around us – from the most fundamental processes in nature to cutting-edge electronic devices. Electric and magnetic fields arise from charged particles. Charged particles also feel forces in electric and magnetic fields. Maxwell’s equations, in addition to describing this behavior, also describe electromagnetic radiation. 
The three-course series comprises:
8.02.1x: Electrostatics
8.02.2x: Magnetic Fields and Forces
8.02.3x: Maxwell’s Equations
This course was organized as a three-part series on MITx by MIT’s Department of Physics and is now archived on the Open Learning Library, which is free to use. You have the option to sign up and enroll in each module if you want to track your progress, or you can view and use all the materials without enrolling.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Barrantes, Analia
Dourmashkin, Peter
Rajagopal, Krishna
Redwine, Robert
Tomasik, Michelle
Date Added:
02/01/2019