Updating search results...

Search Resources

22 Results

View
Selected filters:
  • algae
#1: Why are Flamingos Pink?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this Wonder of the DayR, we learn about why flamingos are pink. Students have the opportunity to explore the Wonder either as a class or individually. With suggestions for different age groups, Wonder #1 has an activity to engage students with drawing, writing description, or both. 

Subject:
Composition and Rhetoric
Culinary Arts
Health, Medicine and Nursing
Visual Arts
Material Type:
Lesson Plan
Author:
Wendee Mullikin
Date Added:
11/22/2019
#1: Why are Flamingos Pink?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

, We will learn about why flamingos are pink. Students have the opportunity to explore as a class or individually. With suggestions for different age groups. This resource has some activities to engage students with drawing, writing descriptions, or both. 

Subject:
Composition and Rhetoric
Culinary Arts
Health, Medicine and Nursing
Visual Arts
Material Type:
Unit of Study
Author:
Ana Bellido
Date Added:
01/05/2023
#1: Why are Flamingos Pink?
Unrestricted Use
CC BY
Rating
0.0 stars

In this Wonder of the DayR, we learn about why flamingos are pink. Students have the opportunity to explore the Wonder either as a class or individually. With suggestions for different age groups, Wonder #1 has an activity to engage students with drawing, writing description, or both. 

Subject:
Composition and Rhetoric
Culinary Arts
English Language Arts
Health, Medicine and Nursing
Visual Arts
Material Type:
Homework/Assignment
Lesson Plan
Reading
Author:
Julie Tastad
Date Added:
07/23/2020
Alaskan Tribes Join Together to Assess Harmful Algal Blooms
Unrestricted Use
Public Domain
Rating
0.0 stars

Tribal communities in southeastern Alaska are partnering with federal and state agencies to investigate increasing harmful algal blooms—events that pose human health risks to subsistence harvesters.

Subject:
Biology
Life Science
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
08/18/2016
Algae: Tiny Plants with Big Energy Potential
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to biofuels, biological engineers, algae and how they grow (photosynthesis), and what parts of algae can be used for biofuel (biomass from oils, starches, cell wall sugars). Through this lesson, plants—and specifically algae—are presented as an energy solution. Students learn that breaking apart algal cell walls enables access to oil, starch, and cell wall sugars for biofuel production. Students compare/contrast biofuels and fossil fuels. They learn about the field of biological engineering, including what biological engineers do. A 20-slide PowerPoint® presentation is provided that supports students taking notes in the Cornell format. Short pre- and post-quizzes are provided. This lesson prepares students to conduct the associated activity in which they make and then eat edible algal cell models.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Lauren Jabusch
Date Added:
05/16/2017
Biorecycling: Using Nature to Make Resources from Waste
Read the Fine Print
Educational Use
Rating
0.0 stars

By studying key processes in the carbon cycle, such as photosynthesis, composting and anaerobic digestion, students learn how nature and engineers "biorecycle" carbon. Students are exposed to examples of how microbes play many roles in various systems to recycle organic materials and also learn how the carbon cycle can be used to make or release energy.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
George Dick
Herby Jean
Ivy Drexler
Jorge Calabria
Lyudmila Haralampieva
Matthew Woodham
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Dome It Challenge Scenario Cards
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams find solutions to hypothetical challenge scenarios that require them to sustainably manage both resources and wastes. They begin by creating a card representing themselves and the resources (inputs) they need and wastes (outputs) they produce. Then they incorporate additional cards for food and energy components and associated necessary resources and waste products. They draw connections between outputs that provide inputs for other needs, and explore the problem of using linear solutions in resource-limited environments. Then students incorporate cards based on biorecycling technologies, such as algae photobioreactors and anaerobic digesters in order to make circular connections. Finally, the student teams present their complete biorecycling engineering solutions to their scenarios in poster format by connecting outputs to inputs, and showing the cycles of how wastes become resources.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
Erin Morrison
George Dick
Ivy Drexler
Jorge Calabria
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Edible Algae Models
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make edible models of algal cells as a way to tangibly understand the parts of algae that are used to make biofuels. The molecular gastronomy techniques used in this activity blend chemistry, biology and food for a memorable student experience. The models use sodium alginate, which forms a gel matrix when in contact with calcium or moderate acid, to represent the complex-carbohydrate-composed cell walls of algae. Cell walls protect the algal cell contents and can be used to make biofuels, although they are more difficult to use than the starch and oils that accumulate in algal cells. The liquid juice interior of the algal models represents the starch and oils of algae, which are easily converted into biofuels.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Lauren Jabusch
Date Added:
05/16/2017
Effect of Nitrate and Phosphate Levels on the Growth of Algae
Read the Fine Print
Educational Use
Rating
0.0 stars

Nitrate and phosphate are useful as fertilizers in agriculture and gardening. Nitrate and phosphate aid agricultural production by producing more abundant crops. However, since the mass production of ammonia during the 1940's by way of the Haber process, it has been noted that a phenomenon known as “nitrate pollution” may occur. This pollution can be demonstrated by conducting this simple experiment. This experiment demonstrates two main ideas. The first is a test of what levels of nitrate and phosphate allow for optimum algal growth. The second demonstrates at which levels of nitrate and phosphate algal blooms may occur, causing harm to an aquatic ecosystem (Freeman, 2002).

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Niagra University and Dr. Robert G. O’Donnell Middle School
Provider Set:
American Society for Microbiology
Author:
Mark Gallo and Shannon Ventresca
Date Added:
08/09/2012
Feed Me!
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article discusses the many lichens found in the Arctic and Antarctica and their unique characteristics.

Subject:
Applied Science
Environmental Science
Geoscience
Physical Science
Material Type:
Reading
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Carol Minton Morris
Date Added:
10/17/2014
The Great Algae Race
Read the Fine Print
Educational Use
Rating
0.0 stars

In a multi-week experiment, student groups gather data from the photobioreactors that they build to investigate growth conditions that make algae thrive best. Using plastic soda bottles, pond water and fish tank aerators, they vary the amount of carbon dioxide (or nutrients or sunlight, as an extension) available to the microalgae. They compare growth in aerated vs. non-aerated conditions. They measure growth by comparing the color of their algae cultures in the bottles to a color indicator scale. Then they graph and analyze the collected data to see which had the fastest growth. Students learn how plants biorecycle carbon dioxide into organic carbon (part of the carbon cycle) and how engineers apply their understanding of this process to maximize biofuel production.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
George Dick
Herby Jean
Ivy Drexler
Jorge Calabria
Lyudmila Haralampieva
Matthew Woodham
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Grow Your Own Algae!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover how tiny microscopic plants can remove nutrients from polluted water. They also learn how to engineer a system to remove pollutants faster and faster by changing the environment for the algae.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Lee Martinez
Tapas K. Das
Date Added:
09/18/2014
How Clean is that Water?
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson plan helps students understand the factors that affect water quality and the conditions that allow for different animals and plants to survive. Students will look at the effects of water quality on various water-related activities and describe water as an environmental, economic and social resource. The students will also learn how engineers use water quality information to make decisions about stream modifications.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/18/2014
Inanimate Life
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

nanimate Life is an open textbook covering a very traditional biological topic, botany, in a non-traditional way. Rather than a phylogenetic approach, going group by group, the book considers what defines organisms and examines four general areas of their biology: structure (size, shape, composition and how it comes to be); reproduction (including sex when present); energy and material needs, acquisition and manipulations; and finally their interactions with conditions and with other organisms including agricultural interactions between plants and people. Although much of the text is devoted to vascular plants, the book comparatively considers ‘EBA = everything but animals’ (hence the title): plants, photosynthetic organisms that are not plants (‘algae’, as well as some bacteria and archaebacteria), fungi, and ‘fungal-like’ organisms. The book includes brief ‘fact sheets’ of fifty-nine organisms/groups that biologists should be aware of, ranging from the very familiar (corn, yeast, pines) to the unfamiliar (cryptophytes, diatoms, late-blight of potato). These groups reflect the diversity of inanimate life.

This updated edition was published in July 2022 and includes corrections, revisions, additional figures, and fact-sheets for several more groups.

Subject:
Botany
Life Science
Material Type:
Textbook
Provider:
State University of New York
Provider Set:
Milne Open Textbooks
Author:
George M. Briggs
Date Added:
08/01/2022
Killer Clams
Read the Fine Print
Rating
0.0 stars

Giant clams are no myth. In New England, people love clam chowder, but in the Pacific, some of the clams are as big as a suitcase! In this video filmed in Micronesia, Jonathan goes in search of Giant Clams. These clams are so big that people used to think they caught people...and it almost looks like they could. It turns out that the real problem is that too many people are eating the clams. Please see the accompanying lesson plan for educational objectives, discussion points and classroom activities.

Subject:
Applied Science
Ecology
Forestry and Agriculture
Geoscience
History
History, Law, Politics
Life Science
Mathematics
Oceanography
Physical Science
Technology
Material Type:
Diagram/Illustration
Lesson Plan
Provider:
Jonathan Bird's Blue World
Provider Set:
Jonathan Bird's Blue World
Author:
Jonathan Bird Productions
Oceanic Research Group
Date Added:
03/01/2007
Lichen Exploration
Read the Fine Print
Rating
0.0 stars

Looking at lichen through a hand lens can be like looking at life-forms from an alien planet. In this activity, students focus closely on lichen and get turned on to its different strange and interesting forms. One reason for spending time learning about lichens is that they can be found just about anywhere, so students can keep investigating lichen after they leave your program. Students observe and explore this “weird organism” that grows on rocks and trees and wonder what it is. They learn that it’s a lichen, use a key to identify three types of lichen, reflect on the symbiotic relationship of fungi and algae that make up lichens, and finally search for evidence of lichen succession. After this activity, students will likely begin to notice lichens everywhere, and will be motivated to continue their explorations.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Beetles: Science and Teaching for Field Instructors
Date Added:
05/06/2020
Partners
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This nonfiction article, written for students in grades 4-5, explores lichens: a partnership between an alga and a fungus. Modified versions are available for students in younger grades.

Subject:
Applied Science
Environmental Science
Geoscience
Physical Science
Material Type:
Lesson Plan
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Stephen Whitt
Date Added:
10/17/2014
Pea Soup Ponds
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will learn how water can be polluted by algal blooms. They will grow algae with different concentrations of fertilizer or nutrients and analyze their results as environmental engineers working to protect a local water resource.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Perspectives on Ocean Science: Algae, The World's Most Important "Plants"
Read the Fine Print
Rating
0.0 stars

Believe it or not, your life depends on algae! Join Scripps' Institution's Russell Chapman as he discusses the important roles algae have played in the development of life as we know it. (55 minutes)

Subject:
Ecology
Life Science
Oceanography
Physical Science
Material Type:
Lecture
Provider:
UCTV Teacher's Pet
Date Added:
12/14/2010
Perspectives on Ocean Science: Pharmaceutical Treasures from Marine Pond Scum? Discovery of New Drugs from the Sea
Read the Fine Print
Rating
0.0 stars

Join Scripps' Bill Gerwick in an exploration of the potential uses of one of the most ancient of all life forms - blue-green algae - as a source for new pharmaceuticals with used ranging from anticancer compounds to drug screening. (54 minutes)

Subject:
Biology
Ecology
Life Science
Oceanography
Physical Science
Material Type:
Lecture
Provider:
UCTV Teacher's Pet
Date Added:
11/09/2010