Updating search results...

Search Resources

3 Results

View
Selected filters:
  • advection
Fundamentals of Atmospheric Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Do you want to know more about atmospheric science? This course is designed to give both Meteorology and non-Meteorology students a comprehensive understanding of atmospheric science and the quantitative analytical tools to apply atmospheric science to their own disciplines. Students are introduced to fundamental concepts and applications of atmospheric thermodynamics, radiative transfer, atmospheric chemistry, cloud microphysics, atmospheric dynamics, and the atmospheric boundary layer. These topics are covered broadly but in enough depth to introduce students to the methods atmospheric scientists use to describe and predict atmospheric phenomena. The course is designed to be taken by sophomore meteorology students as well as by students in related disciplines who have an adequate mathematical and physical background.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Bill Brune
Date Added:
10/07/2019
Transport Processes in the Environment
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport.

Subject:
Applied Science
Environmental Science
Hydrology
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Heidi Nepf
Date Added:
01/01/2008
Transport Processes in the Environment
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport.

Subject:
Applied Science
Chemistry
Engineering
Environmental Science
Hydrology
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Nepf, Heidi
Date Added:
09/01/2008