Search Results (127)

View
Selected filters:
  • Kathy Perkins
Acid-Base Solutions
Conditions of Use:
No Strings Attached
Rating

How do strong and weak acids differ? Use lab tools on your computer to find out! Dip the paper or the probe into solution to measure the pH, or put in the electrodes to measure the conductivity. Then see how concentration and strength affect pH. Can a weak acid solution have the same pH as a strong acid solution?

Subject:
Chemistry
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Date Added:
09/01/2010
Alpha Decay
Conditions of Use:
No Strings Attached
Rating

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.

Subject:
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Noah Podolefsky
Ron LeMaster
Sam McKagan
Wendy Adams
Date Added:
07/21/2011
Alpha Decay (AR)
Conditions of Use:
Read the Fine Print
Rating

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.

Subject:
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Noah Podolefsky
Ron LeMaster
Sam McKagan
Wendy Adams
Date Added:
09/02/2012
Area Builder
Conditions of Use:
No Strings Attached
Rating

Create your own shapes using colorful blocks and explore the relationship between perimeter and area. Compare the area and perimeter of two shapes side-by-side. Challenge yourself in the game screen to build shapes or find the area of funky figures. Try to collect lots of stars!

Subject:
Mathematics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Amanda McGarry
Ariel Paul
Beth Stade
Bryce Gruneich
John Blanco
Karina Hensberry (lead)
Kathy Perkins
Date Added:
01/08/2018
Area Model Algebra
Conditions of Use:
No Strings Attached
Rating

Build rectangles of various sizes and relate multiplication to area. Discover new strategies for multiplying algebraic expressions. Use the game screen to test your multiplication and factoring skills!

Subject:
Algebra
Material Type:
Diagram/Illustration
Game
Interactive
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Amanda McGarry (co-lead)
Amy Hanson (lead designer)
Ariel Paul
Diana Lopez Tavares (artwork)
Jonathan Olson (developer)
Karina Hensberry
Kathy Perkins
Mariah Hermsmeyer (artwork)
Susan Miller
Date Added:
05/09/2018
Area Model Introduction
Conditions of Use:
No Strings Attached
Rating

Build rectangles of various sizes and relate multiplication to area. Partition a rectangle into two areas to discover the distributive property.

Subject:
Elementary Education
Algebra
Numbers and Operations
Material Type:
Diagram/Illustration
Game
Interactive
Simulation
Author:
Amanda McGarry (co-lead)
Amy Hanson (lead designer)
Ariel Paul
Diana Lopez Tavares (artwork)
Jonathan Olson (developer)
Karina Hensberry
Kathy Perkins
Mariah Hermsmeyer (artwork)
Susan Miller
Date Added:
05/15/2018
Area Model Multiplication
Conditions of Use:
No Strings Attached
Rating

Build rectangles of various sizes and relate multiplication to area. Discover new strategies for multiplying large numbers. Use the game screen to test your problem solving strategies!

Subject:
Elementary Education
Algebra
Numbers and Operations
Material Type:
Diagram/Illustration
Game
Interactive
Simulation
Author:
Amanda McGarry (co-lead)
Amy Hanson (lead designer)
Ariel Paul
Diana Lopez Tavares (artwork)
Jonathan Olson (developer)
Karina Hensberry
Kathy Perkins
Mariah Hermsmeyer (artwork)
Susan Miller
Date Added:
05/15/2018
Atomic Interactions
Conditions of Use:
No Strings Attached
Rating

Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.

Subject:
Chemistry
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Jack Barbera
John Blanco
Kathy Perkins
Kelly Lancaster
Noah Podolefsky
Wendy Adams
Date Added:
08/01/2009
Atomic Interactions (AR)
Conditions of Use:
Read the Fine Print
Rating

Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.

Subject:
Chemistry
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Jack Barbera
John Blanco
Kathy Perkins
Kelly Lancaster
Noah Podolefsky
Wendy Adams
Date Added:
08/01/2009
Balancing Chemical Equations
Conditions of Use:
No Strings Attached
Rating

How do you know if a chemical equation is balanced? What can you change to balance an equation? Play a game to test your ideas!

Subject:
Chemistry
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Date Added:
08/15/2011
Balloons & Buoyancy
Conditions of Use:
No Strings Attached
Rating

Experiment with a helium balloon, a hot air balloon, or a rigid sphere filled with different gases. Discover what makes some balloons float and others sink.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Date Added:
11/15/2007
Balloons & Buoyancy (AR)
Conditions of Use:
Read the Fine Print
Rating

Experiment with a helium balloon, a hot air balloon, or a rigid sphere filled with different gases. Discover what makes some balloons float and others sink.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Date Added:
07/02/2009
Beer's Law Lab
Conditions of Use:
No Strings Attached
Rating

The PhET project at the University of Colorado creates "fun, interactive, research-based simulations of physical phenomena." This particular one deals with Beer's Law. "The thicker the glass, the darker the brew, the less the light that passes through." Make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer! The simulation is also paired with a teachers' guide and related resources from PhET. The simulation is also available in multiple languages.

Subject:
Chemistry
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily B. Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Date Added:
05/14/2012
Bending Light
Conditions of Use:
No Strings Attached
Rating

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
University of Colorado at Boulder
Date Added:
05/09/2011
Blackbody Spectrum
Conditions of Use:
No Strings Attached
Rating

How does the blackbody spectrum of the sun compare to visible light? Learn about the blackbody spectrum of the sun, a light bulb, an oven, and the earth. Adjust the temperature to see the wavelength and intensity of the spectrum change. View the color of the peak of the spectral curve.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
Wendy Adams
Date Added:
11/15/2007