Search Resources

8 Results

View
Selected filters:
  • Aaron Lamplugh
Build the Biggest Box
Read the Fine Print
Educational Use
Rating

Student pairs are given 10 minutes to create the biggest box possible using one piece of construction paper. Teams use only scissors and tape to each construct a box and determine how much puffed rice it can hold. Then, to meet the challenge, they improve their designs to create bigger boxes. They plot the class data, comparing measured to calculated volumes for each box, seeing the mathematical relationship. They discuss how the concepts of volume and design iteration are important for engineers. Making 3-D shapes also supports the development of spatial visualization skills. This activity and its associated lesson and activity all employ volume and geometry to cultivate seeing patterns and understanding scale models, practices used in engineering design to analyze the effectiveness of proposed design solutions.

Subject:
Mathematics
Geometry
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Aaron Lamplugh
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
02/07/2017
Discovering Relationships between Side Length and Area
Read the Fine Print
Educational Use
Rating

Through this lesson and its two associated activities, students are introduced to the use of geometry in engineering design, and conclude by making scale models of objects of their choice. The practice of developing scale models is often used in engineering design to analyze the effectiveness of proposed design solutions. In this lesson, students complete fencing (square) and fire pit (circle) word problems on two worksheets—which involves side and radius dimensions, perimeters, circumferences and areas—guiding them to discover the relationships between the side length of a square and its area, and the radius of a circle and its area. They also think of real-world engineering applications of the geometry concepts.

Subject:
Mathematics
Geometry
Measurement and Data
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Aaron Lamplugh
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
02/07/2017
Do the Robot! Programming a RedBot to Dance
Read the Fine Print
Educational Use
Rating

Students program the drive motors of a SparkFun RedBot with a multistep control sequence—a “dance.” Doing this is a great introduction to robotics and improves overall technical literacy by helping students understand that we use programs to control the motion and function of robots, and without the correct programming, robots do not operate as intended and are unable to complete simple tasks that we count on them to perform. Students are given the basic code and then time to experiment, alter and evolve it on their own. As time permits, students may also want to construct and decorate frames and chassis for their robots using found/recycled materials such as cardboard boxes.

Subject:
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Aaron Lamplugh
Brian Huang
Date Added:
03/15/2017
Geometry Solutions: Design and Play Mini-Golf
Read the Fine Print
Educational Use
Rating

Students learn about geometric relationships by solving real mini putt examples on paper and then using putters and golf balls to experiment with the teacher’s pre-made mini put hole(s) framed by 2 x 4s, comparing their calculated (theoretical) results to real-world results. To “solve the holes,” they find the reflections of angles and then solve for those angles. They do this for 1-, 2- and 3-banked hole-in-one shots. Next, students apply their newly learned skills to design, solve and build their own mini putt holes, also made of 2 x 4s and steel corners.

Subject:
Geometry
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Aaron Lamplugh
Andi Vicksman
Devin Rourke
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
03/01/2017
Geometry Tools: Angles & Reflections
Read the Fine Print
Educational Use
Rating

Students learn about common geometry tools and then learn to use protractors (and Miras, if available) to create and measure angles and reflections. The lesson begins with a recap of the history and modern-day use of protractors, compasses and mirrors. After seeing some class practice problems and completing a set of worksheet-prompted problems, students share their methods and work. Through the lesson, students gain an awareness of the pervasive use of angles, and these tools, for design purposes related to engineering and everyday uses. This lesson prepares students to conduct the associated activity in which they “solve the holes” for hole-in-one multiple-banked angle solutions, make their own one-hole mini-golf courses with their own geometry-based problems and solutions, and then compare their “on paper” solutions to real-world results.

Subject:
Mathematics
Geometry
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Aaron Lamplugh
Devin Rourke
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
02/07/2017
LilyTiny Plush Monsters Are Alive!
Read the Fine Print
Educational Use
Rating

Students learn how to set up pre-programmed microcontroller units like the Arduino LilyPad and use them to enhance a product’s functionality and personality. They do this by making plush toys in monster shapes (template provided) with microcontrollers and LEDs sewn into the felt fabric with conductive thread to make circuits. At activity end, each student will have created his or her own plush toy, complete with LEDs that illuminate in a specified sequence: random twinkle, blink, heartbeat and/or breathing.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Aaron Lamplugh
Angela Sheehan
Date Added:
03/03/2017
Scale Model Project
Read the Fine Print
Educational Use
Rating

Students build scale models of objects of their choice. In class they measure the original object and pick a scale, deciding either to scale it up or scale it down. Then they create the models at home. Students give two presentations along the way, one after their calculations are done, and another after the models are completed. They learn how engineers use scale models in their designs of structures, products and systems. Two student worksheets as well as rubrics for project and presentation expectations and grading are provided.

Subject:
Mathematics
Geometry
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Aaron Lamplugh
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
02/07/2017
Using Microcontrollers to Model Homeostasis
Read the Fine Print
Educational Use
Rating

Students learn about homeostasis and create models by constructing simple feedback systems using Arduino boards, temperature sensors, LEDs and Arduino code. Starting with pre-written code, students instruct LEDs to activate in response to the sensor detecting a certain temperature range. They determine appropriate temperature ranges and alter the code accordingly. When the temperature range is exceeded, a fan is engaged in order to achieve a cooling effect. In this way, the principle of homeostasis is demonstrated. To conclude, students write summary paragraphs relating their models to biological homeostasis.

Subject:
Career and Technical Education
Life Science
Biology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Aaron Lamplugh
Date Added:
02/07/2017