Students often think additively rather than multiplicatively. For example, if you present ...

Students often think additively rather than multiplicatively. For example, if you present the scenario, "One puppy grew from 5 pounds to 10 pound. Another puppy grew from 100 pounds to 108 pounds." and ask, "Which puppy grew more?" someone who is thinking additively will say that the one who now weighs 108 grew more because he gained 8 pounds while the other gained 5 pounds. Someone who is thinking multiplicatively will say that the one that now weighs 10 pounds grew more because he doubled his weight while the other only added a few pounds. While both are correct answers, multiplicative thinking is needed for proportional reasoning. If your students are thinking additively, you can nudge them toward multiplicative thinking with this activity.

Open middle problems require a higher depth of knowledge than most problems ...

Open middle problems require a higher depth of knowledge than most problems that assess procedural and conceptual understanding. They support the Common Core State Standards and provide students with opportunities for discussing their thinking.

The Finding Equivalent Ratios problem asks students to use the digits 1-9 to create 3 equivalent ratios made up of single and double digit numbers.

This lesson unit is intended to help sixth grade teachers assess how ...

This lesson unit is intended to help sixth grade teachers assess how well students are able to: Analyze a realistic situation mathematically; construct sight lines to decide which areas of a room are visible or hidden from a camera; find and compare areas of triangles and quadrilaterals; and calculate and compare percentages and/or fractions of areas.

In this lesson, students define rate. After coming up with a preliminary ...

In this lesson, students define rate. After coming up with a preliminary definition on their own, students identify situations that describe rates and situations that do not.Students determine what is common among rate situations and then revise their definitions of rate based on these observations. Students present and discuss their work and together create a class definition. They compare the class definition of rate with the Glossary definition and revise the class definition as needed.Key ConceptsA good definition of rate has to be precise, yet general enough to be useful in a variety of situations. For example, the statement “a rate compares two quantities” is true, but it is so general that it is not helpful. The statement “speed is a rate” is true, but it is not useful in determining whether unit price or population density are rates.A good definition of rate needs to state that a rate is a single quantity, expressed with a unit of the form A per B, and derived from a comparison by division of two measures of a single situation.Goals and Learning ObjectivesGain a deeper understanding of rate by developing, refining, testing, and then refining again a definition of rate.Use a definition of rate to determine the kinds of situations that are rate situations and to recognize rates in new and different situations.Understand the importance of precision in communicating mathematical concepts.

This problem, the third in a series of tasks set in the ...

This problem, the third in a series of tasks set in the context of a class election, is more than just a problem of computing the number of votes each person receives. In fact, that isnŐt enough information to solve the problem. One must know how many votes it takes to make one half of the total number of votes. Although the numbers are easy to work with, there are enough steps and enough things to keep track of to lift the problem above routine.

This is a task from the Illustrative Mathematics website that is one ...

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Lin rode a bike 20 miles in 150 minutes. If she rode at a constant speed, How far did she ride in 15 minutes? How long did it take her to ride 6 miles?...

This is a task from the Illustrative Mathematics website that is one ...

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.

This is a task from the Illustrative Mathematics website that is one ...

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Hippos sometimes get to eat pumpkins as a special treat. If 3 hippos eat 5 pumpkins, how many pumpkins per hippo is that? Lindy made 24 jelly-bread san...

In this lesson, students explore rate in the context of grocery shopping. ...

In this lesson, students explore rate in the context of grocery shopping. Students use the unit price, or price per egg, to find the price of any number of eggs.Key ConceptsA unit price is a rate. The unit price tells the price of one unit of something (for example, one pound of cheese, one quart of milk, one box of paper clips, one package of cereal, and so on).The unit price can be found by dividing the price in dollars by the number of units.The unit price can be used to find the price of any quantity of something by multiplying the unit price by the quantity.Goals and Learning ObjectivesInvestigate rate as a unit price.Find a unit price by dividing the price in dollars by the number of units.Find the price of any quantity of something by multiplying that quantity by the unit price.

Rate Type of Unit: Concept Prior Knowledge Students should be able to: ...

Rate

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Solve problems involving all four operations with rational numbers. Understand quantity as a number used with a unit of measurement. Solve problems involving quantities such as distances, intervals of time, liquid volumes, masses of objects, and money, and with the units of measurement for these quantities. Understand that a ratio is a comparison of two quantities. Write ratios for problem situations. Make and interpret tables, graphs, and diagrams. Write and solve equations to represent problem situations.

Lesson Flow

In this unit, students will explore the concept of rate in a variety of contexts: beats per minute, unit prices, fuel efficiency of a car, population density, speed, and conversion factors. Students will write and refine their own definition for rate and then use it to recognize rates in different situations. Students will learn that every rate is paired with an inverse rate that is a measure of the same relationship. Students will figure out the logic of how units are used with rates. Then students will represent quantitative relationships involving rates, using tables, graphs, double number lines, and formulas, and they will see how to create one such representation when given another.

In this interactive activity adapted from Annenberg Learner's Teaching Math Grades 6–8, ...

In this interactive activity adapted from Annenberg Learner's Teaching Math Grades 6–8, explore some of the ways graphs can represent mathematical data contained in a story.

Learn about the dynamic relationships between a jet engine's heat loss, surface ...

Learn about the dynamic relationships between a jet engine's heat loss, surface area, and volume in this video adapted from Annenberg Learner's Learning Math: Patterns, Functions, and Algebra.

This is the fourth in a series of tasks about ratios set ...

This is the fourth in a series of tasks about ratios set in the context of a classroom election. What makes this problem interesting is that the number of voters is not given. This information isnŐt necessary, but at first glance some students may believe it is.

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.