Updating search results...

Search Resources

85 Results

View
Selected filters:
  • Activities
How to Design a Better Smartphone Case
Read the Fine Print
Educational Use
Rating
0.0 stars

Engineers create and use new materials, as well as new combinations of existing materials to design innovative new products and technologies—all based upon the chemical and physical properties of given substances. In this activity, students act as materials engineers as they learn about and use chemical and physical properties including tessellated geometric designs and shape to build better smartphone cases. Guided by the steps of the engineering design process, they analyze various materials and substances for their properties, design/test/improve a prototype model, and create a dot plot of their prototype testing results.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Courtney Phelps
Jill Weaver
Maggie Demarse
Marjorie Langston
Date Added:
11/28/2018
Humidity? Build a Psychrometer!
Read the Fine Print
Educational Use
Rating
0.0 stars

Using thermometers, cotton balls, string and water, students make simple psychrometers—a tool that measures humidity. They learn the difference between relative humidity (the ratio of water vapor content to water vapor carrying capacity) and dew point (the temperature at which dew forms). Teams collect data using their homemade psychrometers and then calculate relative humidity inside and outside, comparing their results to an off-the-shelf psychrometer (if available). A lab worksheet is provided for data collection and calculation. As a real-world connection, students learn that humidity and air density is taken into consideration by engineers for many design projects. To conclude, they answer and discuss analysis and application questions.

Subject:
Algebra
Mathematics
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Ashley Martin
Dale Gaddis
Hannah Brooks
Lazar Trifunovic
Michael A. Soltys
Shay Marceau
Date Added:
11/29/2017
Inquiry and Engineering: Gliders
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams design, build and test small-sized gliders to maximize flight distance and an aerodynamic ratio, applying their knowledge of fluid dynamics to its role in flight. Students experience the entire engineering design process, from brainstorming to CAD (or by hand) drafting, including researching (physics of aerodynamics and glider components that take advantage of that science), creating materials lists, constructing, testing and evaluating—all within constraints (works with a launcher, budget limitation, maximizing flight distance to mass ratio), and concluding with a summary final report. Numerous handouts and rubrics are provided.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Melanie Finn-Scofield
Date Added:
01/01/2015
Just Like Kidneys: Semipermeable Membrane Prototypes
Read the Fine Print
Educational Use
Rating
0.0 stars

Using ordinary household materials, student “biomedical engineering” teams design prototype models that demonstrate semipermeability under the hypothetical scenario that they are creating a teaching tool for medical students. Working within material constraints, each model consists of two layers of a medium separated by material acting as the membrane. The competing groups must each demonstrate how water (or another substance) passes through the first layer of the medium, through the membrane, and into the second layer of the medium. After a few test/evaluate/redesign cycles, teams present their best prototypes to the rest of the class. Then student teams collaborate as a class to create one optimal design that reflects what they learned from the group design successes and failures. A pre/post-quiz, worksheet and rubric are provided.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jasmine Nitschke
Kelsey Mongeon
Date Added:
07/03/2017
Lab Research to Engineer a Phosphorescent Bioplastic
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain first-hand experience with the steps of the scientific method as well as the overarching engineering design process as they conduct lab research with the aim to create a bioplastic with certain properties. Students learn about the light mechanism that causes ultraviolet bead color change, observe the effect of different light waves on a phosphorescence powder, and see the connection between florescence, phosphorescence and wavelength. Students compose hypotheses and determine experimental procedure details, as teams engineer variations on a bioplastic solid embedded with phosphorescence powder. The objective is to make a structurally sound bioplastic without reducing its glowing properties from the powder embedded within its matrix. Groups conduct qualitative and quantitative analyses of their engineered plastics, then recap and communicate their experiment conclusions in the form of a poster, slides and verbal presentation. As an extension, teams make their own testing apparatuses. As a further extension, they combine all the group results to determine which bioplastic matrix best achieves the desired properties and then “manufacture” the optimum bioplastic into glowing toy figurine end products! Many handouts, instructions, photos and rubrics are provided.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jamie Sorrell
Michael Hipp
Date Added:
09/23/2017
Light-Up Plush Pals
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make their own design decisions about controlling the LEDs in a light-up, e-textile circuit, plush toy project that they make using LilyPad ProtoSnap components and conductive thread. They follow step-by-step instructions to assemble a product while applying their own creativity to customize it. They first learn about the switches—an on/off switch and a button—exploring these two ways of controlling the flow of electric current to LEDs and showing them the difference between closed and open circuits. Then they craft their creative light-up plush pals made from sewn and stuffed felt pieces (template provided) that include sewn electric circuits. Through this sewable electronics project, students gain a familiarity with microcontrollers, circuits, switches and LEDs—everyday items in today’s world and the components used in so many engineered devices.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Angela Sheehan
Morgan Ulrich
Date Added:
05/11/2017
LilyTiny Plush Monsters Are Alive!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to set up pre-programmed microcontroller units like the Arduino LilyPad and use them to enhance a product’s functionality and personality. They do this by making plush toys in monster shapes (template provided) with microcontrollers and LEDs sewn into the felt fabric with conductive thread to make circuits. At activity end, each student will have created his or her own plush toy, complete with LEDs that illuminate in a specified sequence: random twinkle, blink, heartbeat and/or breathing.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Aaron Lamplugh
Angela Sheehan
Date Added:
03/03/2017
Make a Shoebox Arcade Controller
Read the Fine Print
Educational Use
Rating
0.0 stars

What is inside a video game controller? Students learn about simple circuits and switches as they build arcade controllers using a cardboard box and a MaKey MaKey—an electronic tool and toy that enables users to connect everyday objects to computer programs. Each group uses a joystick and two big push button arcade buttons to make the controller. They follow provided schematics to wire, test and use their controllers—exploring the functionality of the controllers by playing simple computer games like Tetris and Pac-Man. Many instructional photos, a cutting diagram and a wiring schematic are included.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Angela Sheehan
Morgan Ulrich
Date Added:
11/09/2017
Making E-Textile Masks
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about engineering applications in artistic venues by designing and creating eye masks that each contain three LEDs. They explore parallel circuits with their LEDs, and sew with conductive thread to create light-up displays on their masks, gaining hands-on experience in using engineering technologies as well as custom product design and assembly.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Angela Sheehan
Sabina Schill
Date Added:
02/03/2017
Making Sound-Reactive Clothing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply sound-activated light-up EL wire to create personalized light-up clothing outfits. During the project, students become familiar with the components, code and logic to complete circuits and employ their imaginations to real-world applications of technology. Acting as if they are engineers, students are challenged to incorporate electroluminescent wire to regular clothing to make attention-getting safety clothing for joggers and cyclists. Luminescent EL wire stays cool, making it ideal to sew into wearable projects. They use the SparkFun sound detector and the EL sequencer circuit board to flash the EL wire to the rhythm of ambient sound, such as music, clapping, talking—or roadway traffic sounds! The combination of sensors, microcontrollers and EL wire enables a wide range of feedback and control options.

Subject:
Applied Science
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jen Foxbot
Kent Kurashima
Rachel Sharpe
Sabina Schill
Date Added:
02/13/2018
Mathematically Designing a Frictional Roller Coaster
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply high school-level differential calculus and physics to the design of two-dimensional roller coasters in which the friction force is considered, as explained in the associated lesson. In a challenge the mirrors real-world engineering, the designed roller coaster paths must be made from at least five differentiable functions that are put together such that the resulting piecewise curving path is differentiable at all points. Once designed mathematically, teams build and test small-sized prototype models of the exact designs using foam pipe wrap insulation as the roller coaster track channel with marbles as the ride carts.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Miguel R. Ramirez
Date Added:
08/31/2017
Microplastic Extraction of Exfoliating Beads from Cleansers
Read the Fine Print
Educational Use
Rating
0.0 stars

After watching a short online video that recaps the enormous scale of accumulating plastic waste in our oceans, student teams are challenged to devise a method to remove the most plastic microbeads from a provided commercial personal care product—such as a facial cleanser or body wash. They brainstorm filtering methods ideas and design their own specific procedures that use teacher-provided supplies (coffee filters, funnels, plastic syringes, vinyl tubing, water, plastic bags) to extract the microplastics as efficiently as possible. The research and development student teams compare the final masses of their extracted microbeads to see which filter solutions worked best. Students suggest possible future improvements to their filter designs. A student worksheet is provided.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
David Bennett
Sara Hettenbach
William Welch
Date Added:
06/01/2018
Mmm Cupcakes: What's Their Life Cycle Impact?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about life-cycle assessment and how engineers use this technique to determine the environmental impact of everyday products and processes. As they examine what’s involved in making and consuming cupcakes, a snack enjoyed by millions of people every year, students learn about the production, use and disposal phases of an object’s life cycle. With the class organized into six teams, students calculate data for each phase of a cupcake’s life cycle—wet ingredients, dry ingredients, baking materials, oven baking, frosting, liner disposal—and calculate energy usage and greenhouse gases emitted from making one cupcake. They use ratios and fractions, and compare options for some of the life-cycle stages, such as different paper wrapper endings (disposal to landfills or composting) in order to make a life-cycle plan with a lower environmental impact. This activity opens students’ eyes to see the energy use in the cradle-to-grave lives of everyday products. Pre/post-quizzes, worksheets, activity cards, Excel® workbook and visual aids are provided.

Subject:
Applied Science
Engineering
Mathematics
Numbers and Operations
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Sara Pace
Date Added:
06/07/2017
Molecular Models and 3D Printing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to use computer-aided design (CAD) software to create “complete” 3D-printed molecule models that take into consideration bond angles and lone-pair positioning. To begin, they explore two interactive digital simulations: “build a molecule” and “molecule shapes.” This aids them in comparing and contrasting existing molecular modeling approaches—ball-and-stick, space-filling, and valence shell electron pair repulsion (VSEPR)—so as to understand their benefits and limitations. In order to complete a worksheet that requires them to draw Lewis dot structures, they determine the characteristics and geometries (valence electrons, polar bonds, shape type, bond angles and overall polarity) of 12 molecules. They also use molecular model kits. These explorations and exercises prepare them to design and 3D print their own models to most accurately depict molecules. Pre/Post quizzes, a step-by-step Blender 3D software tutorial handout and a worksheet are provided.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Conrad Faine
Kerlyn Prada
Date Added:
03/14/2017
Monitoring Noise Levels with a Smart Device
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the physical properties of sound, how it travels and how noise impacts human health—including the quality of student learning. They learn different techniques that engineers use in industry to monitor noise level exposure and then put their knowledge to work by using a smart phone noise meter app to measure the noise level at an area of interest, such as busy roadways near the school. They devise an experimental procedure to measure sound levels in their classroom, at the source of loud noise (such as a busy road or construction site), and in between. Teams collect data using smart phones/tablets, microphones and noise apps. They calculate wave properties, including frequency, wavelength and amplitude. A PowerPoint® presentation, three worksheets and a quiz are provided.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jana B. Milford
Kent Kurashima
Date Added:
11/03/2017
Nanoparticles at Photocatalytic Speed!
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams learn how water filtration systems that use nanoparticles and nanotechnology can remove organic compounds from water. First they learn about the role nanoparticles play in water filtration. Then they are introduced to the basics of nanoparticles and nanotechnology, focusing on the impacts and benefits this innovative technology has on our daily lives. Using methylene blue and methyl orange solutions, students test for the efficiency of photocatalytic nanoparticles to sanitize water. They expose a solution sample of water and methyl orange (the microbe indicator) with their newly-made water sanitation filters under UV light (sunlight) to activate the photocatalytic properties of three specific nanoparticles. They visually compare them with control samples to determine the best photocatalytic nanoparticle to sanitize water.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Josie Zamora
Date Added:
08/20/2018
Nanotechnology Scavenger Hunt!
Read the Fine Print
Educational Use
Rating
0.0 stars

Through a scavenger hunt, students are introduced to the world of nanotechnology. In the form of a competition, groups race to locate symbols that correlate to an answer to a general nanotechnology question. Each team receives paper slips with questions; the remaining questions are hidden behind QR codes. Groups need to answer eight total questions in the correct order. Because this is an intro to nanotechnology and its associated engineering, students need to use problem-solving skills in order to identify the correct answers. After the initial scavenger hunt, a brief class discussion explores advances in nanotechnology. Next, students work in teams to research different areas of nanotechnology as they create their own scavenger hunt games.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Carolyn Nichol
Christina Crawford
Date Added:
10/11/2018
Naturally Organized
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work in teams to design a tabletop supply organizer inspired by the natural home of an insect species. Their prototype stores the group’s classroom supplies (scissors, crayon boxes, pencils, and glue sticks). In addition to following measurement constraints that apply to their prototype, students must design their supply organizer with the idea that supplies must be easily retrievable and the organizer must be sturdy enough to withstand everyday classroom wear and tear. Students test their prototype in the classroom for a period of 5 days and evaluate its effectiveness.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Meagan Vaughn
Date Added:
07/01/2019
Night-Light Pennant
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the functions of pre-programmed microcontroller units such as the LilyMini ProtoSnap as they use them to create light-up pennants with LED components. Students design their own felt pennants and sew on circuit components using conductive thread. This activity gives students hands-on experience with engineering technologies while making creative pennants with LED lights that can illuminate in three pre-programmed sequences: all on, breathing, and twinkle.

Subject:
Applied Science
Computer Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Angela Sheehan
Sabina Schill
Date Added:
05/01/2017
Operation Build a Bridge and Get Over It
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as structural engineers and learn about forces and load distributions as they follow the steps of the engineering design process to design and build small-scale bridges using wooden tongue depressors and glue. Teams brainstorm ideas that meet the size and material design constraints and create prototype bridges of the most promising solutions. They test their bridges to see how much weight they can hold until they break and then determine which have the highest strength-to-weight ratios. They examine the prototype failures to identify future improvements. This activity is part of a unit in which multiple activities are brought together for an all-day school/multi-school concluding “engineering field day” competition.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Nadia Richards
Date Added:
01/01/2015