Updating search results...

Search Resources

57 Results

View
Selected filters:
  • gas
The Nitrogen Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

Nitrogen, one of the most abundant elements in the universe, is essential to life. This interactive activity adapted from the University of Alberta provides an overview of the nitrogen cycle.

Subject:
Chemistry
Ecology
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Space Science
Material Type:
Activity/Lab
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
08/09/2007
Petroleum Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this course is to obtain knowledge of the origins of petroleum and gas. An overview is given on the conditions that are needed for oil and gas to accumulate in reservoirs. Moreover, techniques to find and exploit these reservoirs are highlighted. The focus always is on the task of the petroleum geologist during the different phases of oil and gas exploration and production. After an introduction to the course including typical numbers and historical developments, essential terms and concepts like biomolecules and the carbon cycle are explained.

Subject:
Geology
Physical Science
Material Type:
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
S.M. Luthi
Date Added:
07/19/2011
Phase Relations in Reservoir engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, you will learn about phase relations as applied to oil and/or gas reservoir processes, enhanced oil recovery, gas pipeline transportation, natural gas processing and liquefaction, and other problems in petroleum production. The primary objective of the course is to apply the thermodynamics of phase equilibrium to the framework for phase behavior modeling of petroleum fluids. The focus of the course will be on equilibrium thermodynamics and its relevance to phase behavior predictions and phase equilibrium data description. We will attempt to apply phase behavior principles to petroleum production processes of practical interest, especially natural gas condensate systems.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Michael Adewumi
Date Added:
10/07/2019
Physics I
Unrestricted Use
CC BY
Rating
0.0 stars

Continuation of Physics 1. Topics include: simple harmonic motion, gravitation, fluid mechanics, waves, the kinetic theory of gases, and the first and second laws of thermodynamics. This course is a calculus-based physics course that is required by four-year colleges in science and engineering studies.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
North Shore Community College
Author:
Joyce Jeong
Date Added:
05/14/2019
Pop Rockets
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build paper rockets around film canisters, which serve as engines. An antacid tablet and water are put into each canister, reacting to form carbon dioxide gas, and acting as the pop rocket's propellant. With the lid snapped on, the continuous creation of gas causes pressure to build up until the lid pops off, sending the rocket into the air. The pop rockets demonstrate Newton's third law of motion: for every action, there is an equal and opposite reaction.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Radiative Transfer
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Environmental Science
Environmental Studies
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chen, Gang
Date Added:
02/01/2006
Reversible Reactions
Unrestricted Use
CC BY
Rating
0.0 stars

Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
Linda Koch
Ron LeMaster
Wendy Adams
Date Added:
09/01/2005
Reversible Reactions (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
Linda Koch
Ron LeMaster
Wendy Adams
Date Added:
09/02/2009
Rocket Power
Read the Fine Print
Educational Use
Rating
0.0 stars

By making and testing simple balloon rockets, students acquire a basic understanding of Newton's third law of motion as it applies to rockets. Using balloons, string, straws and tape, they see how rockets are propelled by expelling gases, and test their rockets in horizontal and incline conditions. They also learn about the many types of engineers who design rockets and spacecraft.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoff Hill
Jessica Butterfield
Jessica Todd
Sam Semakula
Date Added:
10/14/2015
The Roots of Energy Efficiency: If SUVs Were as Efficient as Refrigerators, America Would be Exporting Oil
Read the Fine Print
Rating
0.0 stars

David Goldstein of the Natural Resources Defense Council takes a look at the energy use of new appliances like refrigerators compared to the continued energy inefficiency of SUVs. Goldstein is a MacArthur fellow and the author of Saving Energy Growing Jobs. The discussion includes David Greene of the Oak Ridge National Laboratory. (56 minutes)

Subject:
Applied Science
Business and Communication
Environmental Science
Material Type:
Lecture
Provider:
UCTV Teacher's Pet
Date Added:
03/12/2012
Solid, Liquid or Gas?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given a variety of materials and asked to identify each material as a solid, liquid or gas. They use their five senses ‰ŰÓ sight, sound, smell, texture and taste ‰ŰÓ to identify the other characteristics of each item.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Date Added:
09/18/2014
States of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as chemical engineers and use LEGO® MINDSTORMS® NXT robotics to record temperatures and learn about the three states of matter. Properties of matter can be measured in various ways, including volume, mass, density and temperature. Students measure the temperature of water in its solid state (ice) as it is melted and then evaporated.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
States of Matter Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Heat, cool and compress atoms and molecules and watch as they change between solid, liquid and gas phases.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
John Blanco
Kathy Perkins
Noah Podolefsky
Paul Beale
Sarah McKagan
Trish Loeblein
Wendy Adams
Date Added:
11/14/2011
Traveling Sound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how sound waves move through liquids, solids and gases in a series of simple sound energy experiments. Understanding the properties of sound and how sound waves travel helps engineers determine the best room shape and construction materials when designing sound recording studios, classrooms, libraries, concert halls and theatres.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date Added:
10/14/2015
Undergraduate - Introductory Chemistry Guided Inquiry Activities
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This guided inquiry learning activity is designed to be used in a large introductory chemistry course. By working in small groups to discuss the presented information and question prompts, students will engage in cycles of exploring and analyzing data, inventing new conceptual understandings, and applying those concepts. Students should be tasked with working together to complete the prompts in each section by a set time limit. After each section is completed, the entire class can share their answers via a personal response system, and the instructor can review and explain the correct responses, using the accompanying slide deck, which translates the problems into multiple-choice prompts.Instructional resources include 1) the learning activity (.docx and .pdf) 2) the learning objects (.docx and .pdf) and 3) the slide deck (.pptx).- Atomic Orbitals- Chemical Fuels- Gas Laws- Intermolecular Forces- pKa Trends- VSEPR

Subject:
Chemistry
Material Type:
Interactive
Lecture
Lesson
Module
Reading
Teaching/Learning Strategy
Unit of Study
Author:
Riley Petillion
W. Stephen McNeil
Date Added:
05/09/2022
Water, Ice, and Snow: Unit Outlines
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article assembles free resources from the Water, Ice, and Snow issue of the Beyond Penguins and Polar Bears cyberzine into a unit outline based on the 5E learning cycle framework. Outlines are provided for Grades K-2 and 3-5.

Subject:
Applied Science
Environmental Science
Geoscience
Physical Science
Space Science
Material Type:
Lesson Plan
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Jessica Fries-Gaither
Date Added:
10/17/2014
What Makes an Eruption Explosive?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the underlying factors that can contribute to Plinian eruptions (which eject large amounts of pumice, gas and volcanic ash, and can result in significant death and destruction in the surrounding environment), versus more gentle, effusive eruptions. Students explore two concepts related to the explosiveness of volcanic eruptions, viscosity and the rate of degassing, by modelling the concepts with the use of simple materials. They experiment with three fluids of varying viscosities, and explore the concept of degassing as it relates to eruptions through experimentation with carbonated beverage cans. Finally, students reflect on how the scientific concepts covered in the activity connect to useful engineering applications, such as community evacuation planning and implementation, and mapping of safe living zones near volcanoes. A PowerPoint® presentation and student worksheet are provided.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Austin Blaser
Helge Gonnermann
Nathan Truong
Thomas Giachetti
Date Added:
02/07/2017