Updating search results...

Search Resources

86 Results

View
Selected filters:
  • ecosystem
Fry Will Survive
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will be able to design and defend a salmon rearing tank for the highest survival rate. They will measure temperature, ph and ammonia on daily basis and make needed adjustments. Given unit ending data students will be able to determine the optimal design for a salmon rearing tank using patterns between water conditions and survival rates.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
06/20/2016
Fungi Exploration
Read the Fine Print
Rating
0.0 stars

Weird and wild fungi are everywhere, especially when it’s wet out. Given the chance to explore and observe fungi, students will notice them everywhere. Exploring fungi will also lead students to appreciate how fungi function in ecosystems as decomposers and other important roles. Recent discoveries in science have found that huge underground networks of thin, branching tubes of mycelium, the white tubes that are the main growing part of a fungus, provide key links between plants and the rest of the ecosystem.

In this Focused Exploration activity, students begin by observing fungi. Then, they learn that mushrooms are the fruiting bodies of fungi. Students use a simple key to identify types of fungi, record data, then regroup, and discuss patterns of where fungi grow. Next, they learn about how fungi digest what they live on, discuss fungal impacts on ecosystems, and reflect on fungi roles in decomposition.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Beetles: Science and Teaching for Field Instructors
Date Added:
05/06/2020
Geographical differences in metabolism and light harvesting mechanisms in glacier cryoconite
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Glaciers and ice sheets may seem dead and empty to the naked eye, but the dust that coats them, cryoconite, is a hotspot for microbes and microbe-driven biogeochemical cycling. However, little is known about the geographical diversity in cryoconite microbial communities. Most cryoconite research focuses on polar microbial communities, and reports on Asia’s high mountain glaciers are rare. A recent metagenomics study found key metabolic and light harvesting differences between polar and Asian alpine cryoconite microbiota. The Asian cryoconite community had more abundant genes for denitrification, suggesting that denitrification is enhanced there compared to polar regions. While Asian cryoconite is dominated by multiple cyanobacterial lineages that possess phycoerythrin, a green-light harvesting protein, polar cryoconite is dominated by a single cyanobacterial species (_Phormidesmis priestleyi_) that lacks phycoerythrin..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/18/2022
Got Energy? Spinning a Food Web
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about energy flow in food webs, including the roles of the sun, producers, consumers and decomposers in the energy cycle. They model a food web and create diagrams of food webs using their own drawings and/or images from nature or wildlife magazines. Students investigate the links between the sun, plants and animals, building their understanding of the web of nutrient dependency and energy transfer.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denise Carlson
Malinda Schaefer Zarske
Date Added:
09/26/2008
Go with the Energy Flow
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about energy and nutrient flow in various biosphere climates and environments. They learn about herbivores, carnivores, omnivores, food chains and food webs, seeing the interdependence between producers, consumers and decomposers. Students are introduced to the roles of the hydrologic (water), carbon, and nitrogen cycles in sustaining the worlds' ecosystems so living organisms survive. This lesson is part of a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denise Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Green Infrastructure and Low-Impact Development Technologies
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to innovative stormwater management strategies that are being used to restore the hydrology and water quality of urbanized areas to pre-development conditions. Collectively called green infrastructure (GI) and low-impact development (LID) technologies, they include green roofs and vegetative walls, bioretention or rain gardens, bioswales, planter boxes, permeable pavement, urban tree canopy, rainwater harvesting, downspout disconnection, green streets and alleys, and green parking. These approaches differ from the traditional centralized stormwater collection system with the idea of handling stormwater at its sources, resulting in many environmental, economic and societal benefits. A PowerPoint® presentation provides photographic examples, and a companion file gives students the opportunity to sketch in their ideas for using the technologies to make improvements to 10 real-world design scenarios.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
How does nitrogen pollution impact coral and their resident microbes?
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Coral reefs are important ocean ecosystems. However, they have been declining in recent years due to human activities, including elevated nitrate in the water. Corals maintain complex relationships with numerous microbes, including the dinoflagellate algae Symbiodiniaceae and bacteria. To better understand the impact of nitrate on coral and their resident microbes, researchers recently examined coral and microbial gene expression changes in larval Pocillopora damicornis. Under elevated nitrate conditions, the Symbiodiniaceae algae generally hoarded more nutrients for its own growth. Normally Symbiodiniaceae share nutrients with the coral, so this was a shift from a mutualistic relationship to a parasitic one, which led to impaired development in the larval coral. However, the prokaryotic microbes might reduce this negative interaction by restraining Symbiodiniaceae growth, which partially restores coral larval development..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/01/2023
Interview an Organism
Read the Fine Print
Rating
0.0 stars

Interview an Organism gives students the opportunity to enter the world of an organism. Students slow down and have a “conversation” with an organism of their choosing, asking questions that can be answered through more observation while paying attention to its surroundings and the scale of its world. It helps take students to a “next level” of observing and questioning as they learn to ask themselves questions that lead them to make deeper observations. In the process, they get to know their chosen organism.

In this Exploration Routine, students search for interesting organisms and observe them. Each pair of students chooses an organism to study, comes up with questions about the organism’s appearance and structures, while attempting to answer each one through observations. Then they move on to more probing questions about the organism’s behavior, ecosystem, and relationships to other organisms. Afterwards, students share with other pairs and then with the whole group.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
Beetles: Science and Teaching for Field Instructors
Date Added:
05/06/2020
Introduction to the Milk Weed Ecosystem
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an inquiry and field study based. Students will be trying to observe, document, compare, contrast, and communicate what information they were able to gather. The will use this information to make in inference about the organisms they have found and classify them as either an insect or not an insect.

Subject:
Ecology
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Akbar Rasheed Muhammad
Date Added:
10/04/2011
Levels of Organization
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

All living things are organized. From the simplest molecule to most complex ecosystem, living organisms have structures that perform tasks at every level. From reproduction to gathering energy, even simple single celled organisms have organization. In this seminar we will explore how living things are organized, from the smallest particles imaginable to the most complex ecosystem on Earth.StandardsBIO.A.1.2.2 Describe and interpret relationships between structure and function at various levels of biological organization (i.e., organelles, cells, tissues, organs, organ systems, and multicellular organisms)

Subject:
Biology
Life Science
Material Type:
Lesson Plan
Author:
Bonnie Waltz
Deanna Mayers
Tracy Rains
Date Added:
10/01/2017
Limiting Factors and Survival
Unrestricted Use
CC BY
Rating
0.0 stars

 Grey heron, Bird, Fish image. Free for use retrieved from https://pixabay.com/photos/grey-heron-bird-fish-hunting-heron-4353038/ 

Subject:
Life Science
Material Type:
Activity/Lab
Author:
Christi Thompson
Date Added:
06/27/2023
Long-term mono-cropping suppresses the rhizosphere microbiome via reduced, homogenous rhizodeposits
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Long-term mono-cropping often suppresses plant growth, but the mechanisms behind this are poorly understood. The key may lie in the soil surrounding the plants’ roots. This region, the rhizosphere, is filled with important microbes and the carbon-containing photosynthesis products, rhizodeposits, that plants exude from their roots. Rhizodeposits are part of the link between plants and their rhizosphere microbes. So, a team of researchers examined the interactions among rhizodeposits, rhizosphere microbes, and mono-cropping long-term. They found that years of mono-cropping led to a gradual decrease in carbon deposition and the chemical diversity of the rhizodeposits. These decreases were strongly correlated with decreases in the rhizosphere microbial diversity and metabolic functioning. Mono-cropping long-term also slowly led to a decrease in the abundance of plant-beneficial microbial groups..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
04/14/2023
MATTER AND ENERGY IN HEALTHY ECOSYSTEMS
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 5th grade unit will take about 8 weeks, 25.5 hours to complete. Students plan and carry out an original investigation in which they observe the effect of different types of matter on the growth of plants. They create their own observable question with prompting such as: “What type of matter do you think will affect plants’ growth?” or “Do you think the amount of a particular type of matter will affect how the plant grows?” They observe their experiment over a period of seven days (or longer if time allows). At the conclusion of the investigation, students use their data to explain how plants convert matter (gas and liquid) into plant matter.

Subject:
Applied Science
Ecology
Education
Elementary Education
Environmental Science
Life Science
Material Type:
Activity/Lab
Date Added:
06/16/2021
MATTER AND ENERGY IN HEALTHY ECOSYSTEMS
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 5th grade unit will take about 8 weeks, 25.5 hours to complete. Students plan and carry out an original investigation in which they observe the effect of different types of matter on the growth of plants. They create their own observable question with prompting such as: “What type of matter do you think will affect plants’ growth?” or “Do you think the amount of a particular type of matter will affect how the plant grows?” They observe their experiment over a period of seven days (or longer if time allows). At the conclusion of the investigation, students use their data to explain how plants convert matter (gas and liquid) into plant matter.

Subject:
Applied Science
Ecology
Education
Elementary Education
Environmental Science
Life Science
Material Type:
Activity/Lab
Date Added:
12/05/2018
Measuring pH as it relates to Water Quality
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Marie Hartford's class of 5th grade scientists learn about the importance of water quality and its benefits to wildlife and the environment. Within the narrow confines of pH necessary for their tank of red-legged frogs, students use a combination of pond and tap water to keep the tank healthy, using their collected data to make the decision on the proportion between the two.

Subject:
Chemistry
Education
Physical Science
Material Type:
Lesson Plan
Teaching/Learning Strategy
Provider:
Teaching Channel
Provider Set:
Teaching Channel
Author:
Marie Hartford
Date Added:
11/02/2012
Middle School: Disruptions in Ecosystems
Rating
0.0 stars

Rating: Examples of High Quality NGSS Design if Improved

Science Discipline: Life Science

Length: Unit

This middle school unit was designed to support the middle school NGSS related to Ecosystems: Interactions, Energy, and Dynamics integrated with elements of related Earth science NGSS (Human Impact). The unit includes five chapters, each focused on a specific phenomenon related to ecosystem disruption, including questions around the reintroduction of wolves into Yellowstone and the invasion of zebra mussels in the Great Lakes and the Hudson River. © Regents of the University of California

Subject:
Ecology
Life Science
Material Type:
Unit of Study
Date Added:
07/25/2019
A Mini World
Read the Fine Print
Educational Use
Rating
0.0 stars

As students learn about the creation of biodomes, they are introduced to the steps of the engineering design process, including guidelines for brainstorming. Students learn how engineers are involved in the design and construction of biodomes and use brainstorming to come up with ideas for possible biodome designs. This lesson is part of a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Katherine Beggs
Malinda Schaefer Zarske
Date Added:
09/18/2014
Natural and Urban "Stormwater" Water Cycles
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an overview of the components of the hydrologic cycle and the important roles they play in the design of engineered systems, students' awareness of the world's limited fresh water resources is heightened. The hydrologic cycle affects everyone and is the single most critical component to life on Earth. Students examine in detail the water cycle components and phase transitions, and then learn how water moves through the human-made urban environment. This urban "stormwater" water cycle is influenced by the pervasive existence of impervious surfaces that limit the amount of infiltration, resulting in high levels of stormwater runoff, limited groundwater replenishment and reduced groundwater flow. Students show their understanding of the process by writing a description of the path of a water droplet through the urban water cycle, from the droplet's point of view. The lesson lays the groundwork for rest of the unit, so students can begin to think about what they might do to modify the urban "stormwater" water cycle so that it functions more like the natural water cycle. A PowerPoint® presentation and handout are provided.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Nitrogen Cycle
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

Students will participate travel from station to station modeling how nitrogen cycles through an ecosystem. This is relevant for students to understand how the matter on earth is finite (conservation of matter), but it can be transferred from place to place and in different forms. Nitrogen is a vital component of life and how we live.

Subject:
Life Science
Material Type:
Lesson Plan
Author:
Allyson Loomis
Julianne Wenner
Date Added:
10/21/2019
OWL PELLET STUDY
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

 The students will dissect an owl pellet by removing the bones.  They will use the bones to reconstruct the skeletons to help them determine what animals the owl has eaten. The class will compile their results and use their findings to help them construct a food web for the owl.

Subject:
Environmental Science
Material Type:
Activity/Lab
Author:
Teresa Walters
Date Added:
06/12/2023