The COVID-19 Pandemic is a clear example of how science and society …
The COVID-19 Pandemic is a clear example of how science and society are connected. This unit explores how different communities are differentially impacted by the virus through the lens of historical inequities in society. In the context of decisions their families make, students explore the basics of how the virus affects people, and design investigations to explore how it spreads from person to person, and what we can do to prevent that spread.
Students learn how the aerodynamics and rolling resistance of a car affect …
Students learn how the aerodynamics and rolling resistance of a car affect its energy efficiency through designing and constructing model cars out of simple materials. As the little cars are raced down a tilted track (powered by gravity) and propelled off a ramp, students come to understand the need to maximize the energy efficiency of their cars. The most energy-efficient cars roll down the track the fastest and the most aerodynamic cars jump the farthest. Students also work with variables and plot how a car's speed changes with the track angle.
Students consider the Earth's major types of landforms such as mountains, rivers, …
Students consider the Earth's major types of landforms such as mountains, rivers, plains, hills, canyons, oceans and plateaus. Student teams build three-dimensional models of landscapes, depicting several of these landforms. Once the models are built, they act as civil and transportation engineers to design and build roads through the landscapes they have created. The worksheet is provided in English and Spanish.
Working in engineering project teams, students evaluate sites for the construction of …
Working in engineering project teams, students evaluate sites for the construction of a pyramid. They base their decision on site features as provided by a surveyor's report; distance from the quarry, river and palace; and other factors they deem important to the project based on their team's values and priorities.
Meaningful STEM learning can happen at home as we use our imagination …
Meaningful STEM learning can happen at home as we use our imagination to solve real problems! This STEM project introduces students to the problem of oil spills around the world. The project culminates with students using their imagination to design a solution to the problem.
This resource is for teachers to develop their knowledge around climate science …
This resource is for teachers to develop their knowledge around climate science along with NGSS-aligned teaching strategies . Teachers can learn more about the following climate change impacts: coastal hazards, fire, human health, floods & droughts, agriculture and species & ecosystems. Users should reference the "STEM Seminar Slides_Template" as a guide for a daylong training and use the other materials as supplemental information and resources.
Students explore the concept of biodegradability by building and observing model landfills …
Students explore the concept of biodegradability by building and observing model landfills to test the decomposition of samples of everyday garbage items. They collect and record experiment observations over five days, seeing for themselves what happens to trash when it is thrown "away" in a landfill environment. This shows them the difference between biodegradable and non-biodegradable and serves to introduce them to the idea of composting. Students also learn about the role of engineering in solid waste management.
Elementary grade students investigate heat transfer in this activity to design and …
Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.
We design and create objects to make our lives easier and more …
We design and create objects to make our lives easier and more comfortable. The houses in which we live are excellent examples of this. Depending on your local climate, the features of your house have been designed to satisfy your particular environmental needs: protection from hot, cold, windy and/or rainy weather. In this activity, students design and build model houses, then test them against various climate elements, and then re-design and improve them. Using books, websites and photos, students learn about the different types of roofs found on various houses in different environments throughout the world.
Students learn about using renewable energy from the Sun for heating and …
Students learn about using renewable energy from the Sun for heating and cooking as they build and compare the performance of four solar cooker designs. They explore the concepts of insulation, reflection, absorption, conduction and convection.
Student teams investigate the properties of electromagnets. They create their own small …
Student teams investigate the properties of electromagnets. They create their own small electromagnet and experiment with ways to change its strength to pick up more paper clips. Students learn about ways that engineers use electromagnets in everyday applications.
Students learn about biomedical engineering while designing, building and testing prototype surgical …
Students learn about biomedical engineering while designing, building and testing prototype surgical tools to treat cancer. Students also learn that if cancer cells are not removed quickly enough during testing, a cancerous tumor may grow exponentially and become more challenging to eliminate. Students practice iterative design as they improve their surgical tools during the activity.
Students pretend they are agricultural engineers during the colonial period and design …
Students pretend they are agricultural engineers during the colonial period and design a miniature plow that cuts through a "field" of soil. They are introduced to the engineering design process and learn of several famous historical figures who contributed to plow design.
Students learn how the force of water helps determine the size and …
Students learn how the force of water helps determine the size and shape of dams. They use clay to build models of four types of dams, and observe the force of the water against each type. They conclude by deciding which type of dam they, as Splash Engineering engineers, will design for Thirsty County.
Students learn about nanocomposites, compression and strain as they design and program …
Students learn about nanocomposites, compression and strain as they design and program robots that compress materials. Student groups conduct experiments to determine how many LEGO MINDSTORMS(TM) NXT motor rotations it takes to compress soft nanocomposites, including mini marshmallows, Play-Doh®, bread and foam. They measure the length and width of their nanocomposite objects before and after compression to determine the change in length and width as a function of motor rotation.
This is a highly adaptable outline for how design thinking could be …
This is a highly adaptable outline for how design thinking could be introduced to your learners over a multi-day project. This plan works best if students are divided up into groups of 3-4 for all work except the introduction to each concept at the beginning of class. Learners should stay in the same group for the whole class.
Includes pre-work links, general instructions to guide planning for each day, design thinking student handouts, and multi-grade NGSS standards linked to design thinking.
Student teams design and create LEGO® structures to house and protect temperature …
Student teams design and create LEGO® structures to house and protect temperature sensors. They leave their structures in undisturbed locations for a week, and regularly check and chart the temperatures. This activity engages students in the design and analysis aspects of engineering.
Students brainstorm ideas for board game formats. Then student teams design, create …
Students brainstorm ideas for board game formats. Then student teams design, create and test games in which players must think of alternative uses (recycling) for used products.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.