Updating search results...

Search Resources

74 Results

View
Selected filters:
  • magnetism
The Energy of Light
Read the Fine Print
Educational Use
Rating
0.0 stars

In this introduction to light energy, students learn about reflection and refraction as they learn that light travels in wave form. Through hands-on activities, they see how prisms, magnifying glasses and polarized lenses work. They also gain an understanding of the colors of the rainbow as the visible spectrum, each color corresponding to a different wavelength.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Cooper
Mandek Richardson
Patricio Rocha
Tapas K. Das
Date Added:
09/18/2014
Faraday's Electromagnetic Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Michael Dubson
Date Added:
10/22/2006
Fundamentals of Materials Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for sophomore students in Materials Science and Engineering, taken with 3.014 and 3.016 to create a unified introduction to the subject. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and solids; structure of complex, disordered, and amorphous materials; tensors and constraints on physical properties imposed by symmetry; and determination of structure through diffraction. Real-world applications include engineered alloys, electronic and magnetic materials, ionic and network solids, polymers, and biomaterials.
This course is a core subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Irvine, Darrell
Marzari, Nicola
Date Added:
09/01/2005
Fundamentals of Physics, II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a continuation of Fundamentals of Physics, I (PHYS 200), the introductory course on the principles and methods of physics for students who have good preparation in physics and mathematics. This course covers electricity, magnetism, optics and quantum mechanics.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
Yale University
Provider Set:
Open Yale Courses
Author:
Ramamurti Shankar
Date Added:
06/16/2011
Generator
Unrestricted Use
CC BY
Rating
0.0 stars

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can use them to make a bulb light.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Michael Dubson
Date Added:
04/01/2008
The Good, the Bad and the Electromagnet
Read the Fine Print
Educational Use
Rating
0.0 stars

Using plastic straws, wire, batteries and iron nails, student teams build and test two versions of electromagnets one with and one without an iron nail at its core. They test each magnet's ability pick up loose staples, which reveals the importance of an iron core to the magnet's strength. Students also learn about the prevalence and importance of electromagnets in their everyday lives.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Martinez
James Cooper Patricio Rocha
Mandek Richardson
Tapas K. Das
Date Added:
09/18/2014
Hands-on Science and Literacy Lessons About Birds
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article provides links to lessons and units about birds, bird characteristics, and penguins. Ideas for literacy integration are included, and all lessons are aligned to national standards.

Subject:
Applied Science
Environmental Science
Material Type:
Lesson Plan
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Jessica Fries-Gaither
Date Added:
10/17/2014
Introduction to Electricity, Magnetism, and Circuits
Unrestricted Use
CC BY
Rating
0.0 stars

This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigour inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
eCampusOntario
Author:
Daryl Janzen
Date Added:
06/08/2019
Introduction to Electricity by Creating a Light Up Quiz Board
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a guided demonstration where students create light up quiz boards to demonstrate electricity vocabulary.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Sarah Morinville
Date Added:
12/13/2011
Introduction to Electromagnetism
Unrestricted Use
CC BY
Rating
0.0 stars

In this course, the student will first learn about waves and oscillations in extended objects using classical mechanics. The course will then examine the sources and laws that govern static electricity and magnetism. A brief look at electrical measurements and circuits will help establish how electromagnetic effects are observed, measured, and applied. These topics lead to an examination of how Maxwell's equations unify electric and magnetic effects and how the solutions to Maxwell's equations describe electromagnetic radiation, which will serve as the basis for understanding all electromagnetic radiation, from very low frequency radiation emitted by power transmission lines to the most powerful astrophysical gamma rays. The course also investigates optics and launches a brief overview of Einstein's special theory of relativity. A basic knowledge of calculus is assumed. (Physics 102; See also: Biology 110, Chemistry 002, Mechanical Engineering 006)

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
11/16/2011
Inverse Square Law
Read the Fine Print
Educational Use
Rating
0.0 stars

This animation from KET's distance learning physics course demonstrates the mathematical formula for a scientific law as it applies to light.

Subject:
Algebra
Chemistry
Functions
Mathematics
Physical Science
Physics
Material Type:
Interactive
Reading
Provider:
PBS LearningMedia
Provider Set:
Teachers' Domain
Author:
KET
The William and Flora Hewlett Foundation
Date Added:
08/25/2008
Investigating Circuits: Building and Comparing Current Intensities of Series, Parallel, and Complex Circuits
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a indoor lab where students investigate the current differences in different circuits where students build a small house and construct different types of circuits.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Stephanie Marsh
Date Added:
12/13/2011
Investigating Electricity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a group lab activity where students explore beginning electrical circuits.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Jodi Warner
Date Added:
12/13/2011
Investigating Motors and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an activity where students build a motor, learn motor operation and theory, interpret their understanding through troubleshooting, and develop a new, experimental question related to the motor. One follow-up activity would be coupling their motor to a fan blade or other axle to convert electrical energy to magnetic energy into mechanical motion for real world application.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
David Reierson
Date Added:
12/13/2011
Learning About Aurorae - The Planterella Experiment
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This unit emphasizes literacy skills for STEAM students, using the Planeterella Experiment to learn about aurorae. Guided by text-dependent questions, students will study and gather evidence from anchor and supplemental texts on the Planterella’s design, purpose and history, magnetic currents and their role in aurorae, the Van Allen Belt, the Lorenz Effect, and how global warming impacts aurorae. Students will perform experiments with magnetic currents and create a lab simulation of the aurora borealis using textual evidence and data from the anchor and supplemental texts. Students will present their findings and their experiments using the Tricaster TC40.

Subject:
Applied Science
Material Type:
Activity/Lab
Lesson Plan
Reading
Simulation
Unit of Study
Date Added:
06/16/2016
Learning the science behind electricity.
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an interactive powerpoint lecture on the science of electricity followed by a laboratory investigation where students dissect a disposable camera.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Andrea Dammann
Date Added:
12/09/2011
Let's Motor!
Unrestricted Use
CC BY
Rating
0.0 stars

This is a PBL project that had students design, build, and explain an electrical device that would safely and accurately demonstrate their mastery of the principles of electricity and magnetism. It was specifically designed to help students increase their depth of knowledge of electrostatics, electrical circuits, and the fundamentals of electromagnetism and induction. The project required students to design an electrical prototype that (upon safety validation), could be built and used to authentically justify their level of mastery to local engineers, electricians, and other experts from the community. Note that the project was designed and delivered per the North Carolina honors Physics curriculum and it can be customized to meet your own specific curriculum needs and resources.

Subject:
Physics
Material Type:
Lesson Plan
Author:
Ben Owens
Date Added:
12/21/2018