Updating search results...

Search Resources

97 Results

View
Selected filters:
  • design-process
Design Step 4: Engineering Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

Engineering analysis distinguishes true engineering design from "tinkering." In this activity, students are guided through an example engineering analysis scenario for a scooter. Then they perform a similar analysis on the design solutions they brainstormed in the previous activity in this unit. At activity conclusion, students should be able to defend one most-promising possible solution to their design challenge. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 4 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 5: Construct a Prototype
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 6: Evaluate/Manufacture a Final Product
Read the Fine Print
Educational Use
Rating
0.0 stars

As students learn more about the manufacturing process, they use the final prototypes created in the previous activity to evaluate, design and manufacture final products. Teams work with more advanced materials and tools, such as plywood, Plexiglas, metals, epoxies, welding materials and machining tools. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 6 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design a Boat
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity was designed for blind learners, but all types of learners can use it to design a boat (bearing in the mind the properties of matter) that will hold as much weight as possible.

Subject:
Education
Material Type:
Activity/Lab
Provider:
Perkins School for the Blind
Provider Set:
Accessible Science
Author:
Kate Fraser
Yoo Jin Chung
Date Added:
01/01/2011
Design and Graphics Communications
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The Design Process is a modern approach to the teaching of practical skills in schools, colleges and universities. It is sometimes called Product Design. In this course learners will learn how to define the Design Process and explain the framework of design. This course discusses the advantages and disadvantages of the design process and it illustrates the design process diagrammatically. It explains problem identification techniques and discusses ways of analysing products to be designed. In addition, this course discusses the importance of investigating into problems before designing and making.

Subject:
Arts and Humanities
Material Type:
Full Course
Homework/Assignment
Reading
Provider:
WikiEducator
Date Added:
02/16/2011
Design and Problem Solving
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity was designed for blind learners, but all types of learners can use it to understand the design process and produce a design for a product meant to solve a specific problem.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
Perkins School for the Blind
Provider Set:
Accessible Science
Author:
Kate Fraser
Yoo Jin Chung
Date Added:
01/01/2011
Design for Function
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment from Cyberchase, the CyberSquad designs an invention that will help them cross a swamp and also reach the top of a tall cliff.

Subject:
Applied Science
Engineering
Technology
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
The William and Flora Hewlett Foundation
WNET
Date Added:
08/29/2008
Designing Paths to Peace
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Teaches creative design based on the scientific method through the design, engineering, and manufacture of a detailed inlaid tile. This is an introductory lecture/studio course designed to teach students the basic principles of design and expose them to the design process. Throughout the course, students will be introduced to the terminology and concepts that underlie all forms of visual art; which--in many ways--forms the basis for the design of all physical objects. Along with learning mechanical skills, thinking both critically and visually, and working with different media, the students will consider how the arts grow out of and respond to particular cultural contexts and ideas; and how these thinking patterns can be applied to virtually all types of design.
Presentations, lectures, demonstrations, discussions and various artistic works will be used to show students how other artists and designers have dealt with the same issues they will be facing in lab.  Each class will begin with a critique of the students' homework, followed by a discussion (and presentation when appropriate) of the pertinent issues of that week. All aspects of the course will aid the teams of students in designing and building a major inlaid tile whose elements are designed as digital solid models and manufactured on an abrasive waterjet machining center. The course will conclude with an exhibit of the completed tiles open to the MIT and the Greater-Boston public. Enrollment is limited to 16 students who will be divided into groups of 4 students each. Preference will be given to students who attend the first day of class in a pre-selected team of 4.

Subject:
Applied Science
Arts and Humanities
Engineering
Graphic Arts
Visual Arts
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Slocum, Alex
Date Added:
09/01/2002
Designing a Color-Changing Paint Using pH
Read the Fine Print
Educational Use
Rating
0.0 stars

How can an understanding of pH—a logarithmic scale used to identify the acidity or basicity of a water-based solution—be used to design and create a color-changing paint? This activity provides students the opportunity to extract dyes from natural products and test dyes for acids or bases as teams develop a prototype “paint” that is eventually applied to help with a wall redesign at a local children’s hospital. Students learn about how dyes are extracted from organic material and use the engineering design process to test dyes using a variety of indicators to achieve the right color for their prototype. Students iterate on their dyes and use ratios and proportions to calculate the amount of dye needed to successfully complete their painting project.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Numbers and Operations
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Benjamin McCombs
Carly Monfort
Joseph Duncan
Linda Gillum
Miyong Hughes
Date Added:
01/30/2019
Designing a Tunnel: An Earth Science Design Challenge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After teaching a unit about rocks and minerals, students are challenged with picking a site for a tunnel, drilling through a mountain with clay, reinforcing the hole to create a tunnel, and then testing their design. Students will also estimate and calculate the amount of time it takes them to drill.

Subject:
Applied Science
Engineering
Environmental Science
Geology
Physical Science
Material Type:
Lesson Plan
Date Added:
03/06/2019
Design of Ocean Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the complete cycle of designing an ocean system using computational design tools for the conceptual and preliminary design stages. Students complete the projects in teams with each student responsible for a specific subsystem. Lectures cover such topics as hydrodynamics; structures; power and thermal aspects of ocean vehicles; environment, materials, and construction for ocean use; and generation and evaluation of design alternatives. The course focuses on innovative design concepts chosen from high-speed ships, submersibles, autonomous vehicles, and floating and submerged deep-water offshore platforms. Lectures on ethics in engineering practice are included, and instruction and practice in oral and written communication is provided.

Subject:
Applied Science
Computer Science
Engineering
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chryssostomidis, Chryssostomos
Liu, Yuming
Date Added:
02/01/2011
Do You See What I See?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the concept of optical character recognition (OCR) in a problem-solving environment. They research OCR and OCR techniques and then apply those methods to the design challenge by developing algorithms capable of correctly "reading" a number on a typical high school sports scoreboard. Students use the structure of the engineering design process to guide them to develop successful algorithms. In the associated activity, student groups implement, test and revise their algorithms. This software design lesson/activity set is designed to be part of a Java programming class.

Subject:
Applied Science
Computing and Information
Education
Engineering
Technology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Derek Babb
Date Added:
09/18/2014
Does It Cut It? Understanding Wind Turbine Blade Performance
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain an understanding of the factors that affect wind turbine operation. Following the steps of the engineering design process, engineering teams use simple materials (cardboard and wooden dowels) to build and test their own turbine blade prototypes with the objective of maximizing electrical power output for a hypothetical situation—helping scientists power their electrical devices while doing research on a remote island. Teams explore how blade size, shape, weight and rotation interact to achieve maximal performance, and relate the power generated to energy consumed on a scale that is relevant to them in daily life. A PowerPoint® presentation, worksheet and post-activity test are provided.

Subject:
Career and Technical Education
Mathematics
Measurement and Data
Numbers and Operations
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Alexander Kon
Date Added:
02/07/2017
Egg Drop
Read the Fine Print
Educational Use
Rating
0.0 stars

A process for technical problem solving is introduced and applied to a fun demonstration. Given the success with the demo, the iterative nature of the process can be illustrated.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Elements of Mechanical Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule).

Subject:
Applied Science
Business and Communication
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Culpepper, Martin
Date Added:
02/01/2009
Engineer a Coin Sorter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the engineering design process and how it is used to engineer products for everyday use. Students individually brainstorm solutions for sorting coins and draw at least two design ideas. They work in small groups to combine ideas and build a coin sorter using common construction materials such as cardboard, tape, straws and fabric. Students test their coin sorters, make revisions and suggest ways to improve their designs. By designing, building, testing and improving coin sorters, students come to understand how the engineering design process is used to engineer products that benefit society.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Megan Schroeder
Stephanie Rivale
Date Added:
09/18/2014
Engineering Design - Paper Bridge
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this activity, students will learn about and apply the engineering design process to solve a problem. The activity frames the problem around designing, building and testing a paper bridge that maximizes the weight it holds.

Resources included in this lesson are found at the bottom of this document and include:
- Teacher guide
- Engineering Notebook Document
- Design Process Presentation
- Design Process Note Sheets
- Links to videos
- Pre/Post Assessment

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Assessment
Lecture
Lesson
Module
Date Added:
12/06/2018
Engineering Design Process Gingerbread Houses
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Architecture is the practice of designing and building structures. Architecture can vary in its scope from functional bridges, houses and buildings to the aesthetic principles of landscape architecture. Architecture is a human endeavor that spans thousands of years. Students will be introduces to Engineering Design Process via the study of Architecture and building their own gingerbread house

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Unit of Study
Date Added:
12/05/2018
Engineering Design and Rapid Prototyping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.
Acknowledgements
This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching, Class of '72 Fund for Educational Innovation). The instructors gratefully acknowledge the financial support.
The course was approved by the Undergraduate Committee of the MIT Department of Aeronautics and Astronautics in 2003. The instructors thank Prof. Manuel Martinez-Sanchez and the committee members for their support and suggestions.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Wallace, David
Young, Peter
de Weck, Olivier
Date Added:
01/01/2005
Engineering Design and Rapid Prototyping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.
Acknowledgements
This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching, Class of '72 Fund for Educational Innovation). The instructors gratefully acknowledge the financial support. The course was approved by the Undergraduate Committee of the MIT Department of Aeronautics and Astronautics in 2003. The instructors thank Prof. Manuel Martinez-Sanchez and the committee members for their support and suggestions.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
de Weck, Olivier
Date Added:
01/01/2007