In Part 1 of this unit, students will learn about data collection, ...

In Part 1 of this unit, students will learn about data collection, graphing skills (both by hand and computer aided [Desmos]), and the fundamental mathematical patterns of the course: horizontal line, proportional, linear, quadratic, and inverse. Students perform several experiments, each targeting a different pattern and build the mathematical models of physical phenomena. During each experiment, students start with an uninformed wild guess, then through inquiry and making sense through group consensus, can make an accurate data informed prediction.

Students are confronted with a scenario of a student who is texting ...

Students are confronted with a scenario of a student who is texting and driving in the school parking lot and they are tasked to determine the effect of various parameters to see if a student will collide with a pedestrian. Students must begin by breaking the scenario down into more manageable parts to determine what must be studied about the situation. Through a series of labs and activities, students learn how to model and predict situations with constant velocity and acceleration. Then, coding a spreadsheet, students model the complex situation of a texting driver, reacting, and braking during a potentially hazardous situation to create an evidence-based argument.

In order to contextualize the Energy unit, students are tasked to engineer ...

In order to contextualize the Energy unit, students are tasked to engineer a bungee cord that will optimize the enjoyment of a doll’s bungee jump. To do this, students first develop the mathematical patterns through inquiry on gravitational energy, kinetic energy, and elastic energy. Once the patterns have been established, students further build on their spreadsheet coding skills, in order to use computational thinking to create a program that will help predict the length of bungee cord necessary for a variety of situations.

This unit is centered on designing a shoe for a customer. Students ...

This unit is centered on designing a shoe for a customer. Students decide on a particular type of shoe that they want to design and utilize ideas of force, impulse, and friction to meet the needs of a particular customer. Force plates are used study the relationship between force, time, and impulse to allow students to get the mathematical models that allow them to make data informed decisions about their shoe design.

The phenomenon that launches this unit is a cell phone call to ...

The phenomenon that launches this unit is a cell phone call to a student in the class, where the caller on speaker phone asks “How are you hearing me?”. Over the course of the unit, students discover the patterns with waves. Then use that understanding to explain ultrasound medical imagining technology and ultimately how cell phones work. Cell phone communication is operationalized by the engineering challenge of communicating a three letter signal by first coding a spreadsheet to digitize the signal in binary (ASCII), then transmit the digital signal using light and sound (AM and FM), then receive and decode the signal to complete the communication. This project models the sending and receiving of a text message.

This unit is loaded with phenomena. The real world task of being ...

This unit is loaded with phenomena. The real world task of being a member of Oregon's Energy Commission that must create a 50-Year Energy Plan propels students through a learning arc that includes electricity, magnetism, power production, and climate science. After the Request for a 50-Year Energy Plan students jigsaw energy sources and power production. They need to understand the basic physics of how generators works leads us to build and explore motors (starting with speakers which also connect to the Waves & Technology unit) and inefficient generators (electric guitars). The need for large amounts of energy and efficient generators motivates us to engineer wind turbines and optimize solar cells for a local facilities use. Creating the rubric to evaluate large scale power production launches us into climate science. With all the learning of the unit students and many real world constraints student finally complete, compare, and evaluate their 50-Year Energy Plan.

By using the hook of Halley’s comet, dark matter, and dark energy ...

By using the hook of Halley’s comet, dark matter, and dark energy students data mine Newton’s Law of Universal Gravity and build an and evaluate other arguments for the Big Bang.

In this video David rapidly explains all the concepts in 1D motion ...

In this video David rapidly explains all the concepts in 1D motion and also quickly solves a sample problem for each concept. Keep an eye on the side scroll see how far along you've made it in the review video. Created by David SantoPietro.

In this video David quickly explains each 2D motion concept and does ...

In this video David quickly explains each 2D motion concept and does a quick example problem for each concept. Keep an eye on the scroll to the right to see where you are in the review. Created by David SantoPietro.

In this video David explains the concepts in Work and Energy and ...

In this video David explains the concepts in Work and Energy and does an example problem for each concept. Link for document: https://www.dropbox.com/s/t1w6xlnkozzel17/Energy%20review.pdf?dl=0. Created by David SantoPietro.

In this video David quickly explains each concept behind Forces and Newton's ...

In this video David quickly explains each concept behind Forces and Newton's Laws and does a sample problem for each concept. Keep an eye on the scroll to the right to see how far along you've made it in the review. Created by David SantoPietro.

In this video David quickly reviews the momentum and impulse topics on ...

In this video David quickly reviews the momentum and impulse topics on the AP Physics 1 exam and solves an example problem for each concept. Created by David SantoPietro.

In this video David quickly explains each concept for waves and simple ...

In this video David quickly explains each concept for waves and simple harmonic motion and does an example question for each one. Created by David SantoPietro.

At this point in the unit, students have learned about Pascal's law, ...

At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.

This video segment adapted from First Light explains why the highest peak ...

This video segment adapted from First Light explains why the highest peak in the Pacific, Mauna Kea, is an ideal site for astronomical observations. Featured are new telescope technologies that allow astronomers to explore the universe in more depth.

Using shell model diagram to relate absorption to emission. Derives relationship between ...

Using shell model diagram to relate absorption to emission. Derives relationship between emitted photon and energy levels, the Balmer-Rydberg equation. Created by Jay.

Acceleration (a) is the change in velocity (Δv) over the change in ...

Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction. Created by Sal Khan.

Using students' step length to understand the relationship between distance, speed and ...

Using students' step length to understand the relationship between distance, speed and acceleration. Includes graphing of data and interpretation of graphs.

Students make a wheel and axle out of cardboard and a wooden ...

Students make a wheel and axle out of cardboard and a wooden dowel. It is rooled along a ramp made of parallel meter sticks, and the acceleration can be made small enough to make accurate measurements and calculations.

Students work as physicists to understand centripetal acceleration concepts. They also learn ...

Students work as physicists to understand centripetal acceleration concepts. They also learn about a good robot design and the accelerometer sensor. They also learn about the relationship between centripetal acceleration and centripetal force governed by the radius between the motor and accelerometer and the amount of mass at the end of the robot's arm. Students graph and analyze data collected from an accelerometer, and learn to design robots with proper weight distribution across the robot for their robotic arms. Upon using a data logging program, they view their own data collected during the activity. By activity end , students understand how a change in radius or mass can affect the data obtained from the accelerometer through the plots generated from the data logging program. More specifically, students learn about the accuracy and precision of the accelerometer measurements from numerous trials.

This segment from Swift: Eyes through Time traces the history military officers ...

This segment from Swift: Eyes through Time traces the history military officers and engineers discovering a strange phenomenon in the sky that astronomers now know are gamma-ray bursts.

In this lab exercise, students practice correctly using measurement tools, recording data, ...

In this lab exercise, students practice correctly using measurement tools, recording data, calculating density, using significant figures, and exploring the concepts of accuracy and precision.

In this video segment adapted from ZOOM, two cast members demonstrate what ...

In this video segment adapted from ZOOM, two cast members demonstrate what happens when vinegar is added to baking soda inside a container. The resulting chemical reaction produces enough carbon dioxide to launch their paper rocket skyward. Recommended for: Grades K-5

A car propelled by the reaction between lemon juice and baking soda ...

A car propelled by the reaction between lemon juice and baking soda has more in common with rockets and jet aircraft than one might think. In this video segment adapted from ZOOM, two cast members demonstrate the power of rocket-propelled vehicles and how to exploit the force produced by the carbon dioxide gas. Grades 3-8.

It would seem that bottles of lemon juice and rockets have only ...

It would seem that bottles of lemon juice and rockets have only their basic shape in common. However, as two cast members from ZOOM demonstrate in this adapted video segment, when baking soda is added to the mix, a plastic bottle can act very much like a real rocket. Grades 3-8.

Students play and record the “Mary Had a Little Lamb” song using ...

Students play and record the “Mary Had a Little Lamb” song using musical instruments and analyze the intensity of the sound using free audio editing and recording software. Then they use hollow Styrofoam half-spheres as acoustic mirrors (devices that reflect and focus sound), determine the radius of curvature of the mirror and calculate its focal length. Students place a microphone at the acoustic mirror focal point, re-record their songs, and compare the sound intensity on plot spectrums generated from their recordings both with and without the acoustic mirrors. A worksheet and KWL chart are provided.

Students construct rockets from balloons propelled along a guide string. They use ...

Students construct rockets from balloons propelled along a guide string. They use this model to learn about Newton's three laws of motion, examining the effect of different forces on the motion of the rocket.

Effective measurement techniques include the concept of measurement uncertainty. Students may make ...

Effective measurement techniques include the concept of measurement uncertainty. Students may make erroneous conclusions analyzing data using measurements that do not include the uncertainty of the measurement. In this lab, students determine a density range for a metal and identify the material based on this range.

This is a lab activity that allows students to collect data to ...

This is a lab activity that allows students to collect data to practice using effective measurement. While other authors have produced similar labs, this version includes uncertainty analysis consistent with effective measurement technique as presented in the module Measurement and Uncertainty.

In this lab-based activity the students will use their knowledge about the ...

In this lab-based activity the students will use their knowledge about the law of conservation of energy to explain the loss of heat by warm water to cold water. Then, the students will use these concepts to design and carry an experiment to determine the unknown temperature of a hot water sample.

This course will focus for a large part on MOSFET and CMOS, ...

This course will focus for a large part on MOSFET and CMOS, but also on heterojunction BJT, and photonic devices.First non-ideal characteristics of MOSFETs will be discussed, like channel-length modulation and short-channel effects. We will also pay attention to threshold voltage modification by varying the dopant concentration. Further, MOS scaling will be discussed. A combination of an n-channel and p-channel MOSFET is used for CMOS devices that form the basis for current digital technology. The operation of a CMOS inverter will be explained. We will explain in more detail how the transfer characteristics relate to the CMOS design.

This tutorial is your guide to use the library like a pro. ...

This tutorial is your guide to use the library like a pro. It covers all of the information you need to find, evaluate and organize research materials. This tutorial is designed for upper-level undergraduate students and graduate students conducting research in physics.

By the end of this tutorial, you will be able to:

Critically evaluate information Identify and avoid predatory publishers Know where to search for relevant resources Apply advanced literature searching techniques Use a citation managers to effectively organize and cite materials

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.