Updating search results...

Search Resources

143 Results

View
Selected filters:
  • Electronic Technology
  • Community College / Lower Division
23 Things for Digital Knowledge
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

23 Things is a suite of 23 self-paced online modules that cover a range of topics from video editing to basic coding. Each module or 'thing' consists of information, interactive activities, and invitations to try out various open and free software applications and technologies. The modules have been created using H5P and can be downloaded individually as a single H5P file, modified and re-used under a CC-BY-SA licence - simply click on the 'reuse' link at the bottom of each module.

The content was created by Curtin University students as part of a 'students as partners' project.

Subject:
Applied Science
Career and Technical Education
Education
Educational Technology
Electronic Technology
Higher Education
Information Science
Material Type:
Full Course
Interactive
Author:
Curtin University Library
Date Added:
12/04/2020
AC Electrical Circuit Analysis: A Practical Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An essential and practical text for both students and teachers of AC electrical circuit analysis, this text picks up where the companion DC electric circuit analysis text leaves off. Beginning with basic sinusoidal functions, ten chapters cover topics including series, parallel, and series-parallel RLC circuits. Numerous theorems and analysis techniques are examined including superposition, Thévenin's theorem, nodal and mesh analysis, maximum power transfer and more. Other important topics include AC power, resonance, Bode plots and an introduction to three-phase systems. Each chapter begins with a set of chapter objectives and includes a summary and review questions. A total of over 500 end-of-chapter exercises are included. A companion laboratory manual is available.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Textbook
Author:
James M. Fiore
Date Added:
05/28/2020
Adaptive Antennas and Phased Arrays
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The 16 lectures in this course cover the topics of adaptive antennas and phased arrays. Both theory and experiments are covered in the lectures. Part one (lectures 1 to 7) covers adaptive antennas. Part two (lectures 8 to 16) covers phased arrays. Parts one and two can be studied independently (in either order). The intended audience for this course is primarily practicing engineers and students in electrical engineering. This course is presented by Dr. Alan J. Fenn, senior staff member at MIT Lincoln Laboratory.
Online Publication

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fenn, Alan
Date Added:
02/01/2010
Analysis and Design of Feedback Control Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course develops the fundamentals of feedback control using linear transfer function system models. Topics covered include analysis in time and frequency domains; design in the s-plane (root locus) and in the frequency domain (loop shaping); describing functions for stability of certain non-linear systems; extension to state variable systems and multivariable control with observers; discrete and digital hybrid systems and use of z-plane design. Students will complete an extended design case study. Students taking the graduate version (2.140) will attend the recitation sessions and complete additional assignments.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Trumper, David
Date Added:
02/01/2014
Applied Industrial Electricity: Theory and Application
Read the Fine Print
Educational Use
Rating
0.0 stars

This free electrical engineering/technology textbook provides a series of chapters covering electricity and electronics. The information provided is great for students, makers, and professionals who are looking for an application-centric coverage of this field.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Textbook
Provider:
Iowa State University
Author:
John Haughery
Tony R Kuphaldt
Date Added:
02/05/2021
Autonomous Robot Design Competition
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.270 is a hands-on, learn-by-doing class, in which participants design and build a robot that will play in a competition at the end of January. The goal for the students is to design a machine that will be able to navigate its way around the playing surface, recognize other opponents, and manipulate game objects. Unlike the machines in Design and Manufacturing I (2.007), 6.270 robots are totally autonomous, so once a round begins, there is no human intervention.
The goal of 6.270 is to teach students about robotic design by giving them the hardware, software, and information they need to design, build, and debug their own robot. The subject includes concepts and applications that are related to various MIT classes (e.g. 6.001, 6.002, 6.004, and 2.007), though there are no formal prerequisites for 6.270.

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
None, No Faculty
Thilmont, Michael
Date Added:
01/01/2005
Basic Electronics 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Video and study guides for the following topics: Order of operations, algebraic manipulation, negative and fractional exponents, rounding, engineering notation, unit conversion, general industrial safety, energy, power, efficiency, capacity factor, basic electrical properties: voltage, current, resistance, fixed resistors, variable resistors, protoboards, ohmmeters, series resistors, parallel resistors, 4 band resistor color code, DC Ohm’s Law, DC power, voltmeters, ammeters, series DC circuit properties, DC Kirchhoff’s Voltage Law, DC voltage divider rule, parallel DC circuit properties, DC Kirchhoff’s Current Law, DC current divider rule, series-parallel DC circuit properties, instrument loading effects, DC current sources, source conversion, resistive delta-Y conversion, complex DC circuits, DC Superposition Theorem, DC Thevenin’s Theorem, DC Maximum Power Transfer Theorem, DC Norton’s Theorem

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
OpenOregon
Author:
Jim Pytel
Date Added:
04/06/2020
Basic Electronics 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is the 2nd in a three part series intended to support the flipped classroom approach for traditional basic electronics classes. Basic Electronics 2 covers capacitors and the transient capacitor charge and discharge process, inductors and the transient inductor storage and release process, sinusoidal properties, complex numbers and complex impedance, phasors, AC Ohm’s Law, series AC circuit analysis, parallel AC circuit analysis, and series-parallel AC circuit analysis. The text includes discussions of Kirchhoff’s Voltage Law, the AC Voltage Divider Rule, Kirchhoff’s Current Law, and the AC Current Divider Rule. Additionally the text covers use of AC voltmeters, AC ammeters, function generators, and oscilloscopes. These resources are meant to accompany a hands on lab with the guidance of an instructor.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
OpenOregon
Author:
Jim Pytel
Date Added:
06/28/2019
Basic Electronics 3
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is the 3rd installment in a three part series intended to support the flipped classroom approach for traditional basic electronics classes. Basic Electronics 3 covers apparent, real, and reactive power and power factor, power factor correction, ideal and non-ideal transformers, and transformer connection diagrams, AC circuit analysis techniques and theorems like source conversion, the AC superposition theorem, AC Thevenin’s Theorem, and the AC Maximum Power Transfer Theorem, 3 phase AC systems including balanced and unbalanced 4 wire Y configurations, 3 wire Y configurations, and delta configurations, the single wattmeter method and the two wattmeter method. These resources are meant to accompany a hands on lab with the guidance of an instructor.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
OpenOregon
Author:
Jim Pytel
Date Added:
06/28/2019
Basic Lighting for Electricians: Level 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This text was written for the early term electrical apprentice or anyone who is interested in the field of lighting and lighting design. It is not intended as a replacement for proper electrical training and only qualified individuals should make any changes to electrical circuits.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
British Columbia/Yukon Open Authoring Platform
Author:
Aaron Lee
Date Added:
05/05/2021
Biological Engineering II: Instrumentation and Measurement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.

Subject:
Applied Science
Biology
Career and Technical Education
Electronic Technology
Engineering
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Manalis, Scott
Shusteff, Maxim
So, Peter
Date Added:
09/01/2006
Build a Small Radar System Capable of Sensing Range, Doppler, and Synthetic Aperture Radar Imaging
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Are you interested in building and testing your own imaging radar system? MIT Lincoln Laboratory offers this 3-week course in the design, fabrication, and test of a laptop-based radar sensor capable of measuring Doppler, range, and forming synthetic aperture radar (SAR) images. You do not have to be a radar engineer but it helps if you are interested in any of the following; electronics, amateur radio, physics, or electromagnetics. It is recommended that you have some familiarity with MATLAB®. Teams of three students will receive a radar kit and will attend a total of 5 sessions spanning topics from the fundamentals of radar to SAR imaging. Experiments will be performed each week as the radar kit is implemented. You will bring your radar kit into the field and perform additional experiments such as measuring the speed of passing cars or plotting the range of moving targets. A final SAR imaging contest will test your ability to form a SAR image of a target scene of your choice from around campus; the most detailed and most creative image wins.
Acknowledgement and Disclaimer
This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Charvat, Gregory
Fenn, Alan
Herd, Jeffrey
Kogon, Steve
Williams, Jonathan
Date Added:
01/01/2011
Circuits and Electronics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS.
The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.
The course uses the required textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Agarwal, Anant
Date Added:
02/01/2007
Communication Systems Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will cover fundamentals of digital communications and networking. We will study the basics of information theory, sampling and quantization, coding, modulation, signal detection and system performance in the presence of noise. The study of data networking will include multiple access, reliable packet transmission, routing and protocols of the internet. The concepts taught in class will be discussed in the context of aerospace communication systems: aircraft communications, satellite communications, and deep space communications.

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Modiano, Eytan
Date Added:
02/01/2009
Computation Structures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces architecture of digital systems, emphasizing structural principles common to a wide range of technologies. It covers the topics including multilevel implementation strategies, definition of new primitives (e.g., gates, instructions, procedures, processes) and their mechanization using lower-level elements. It also includes analysis of potential concurrency, precedence constraints and performance measures, pipelined and multidimensional systems, instruction set design issues and architectural support for contemporary software structures.

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Terman, Chris
Date Added:
02/01/2017
Computation Structures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.004 offers an introduction to the engineering of digital systems. Starting with MOS transistors, the course develops a series of building blocks — logic gates, combinational and sequential circuits, finite-state machines, computers and finally complete systems. Both hardware and software mechanisms are explored through a series of design examples.
6.004 is required material for any EECS undergraduate who wants to understand (and ultimately design) digital systems. A good grasp of the material is essential for later courses in digital design, computer architecture and systems. The problem sets and lab exercises are intended to give students "hands-on" experience in designing digital systems; each student completes a gate-level design for a reduced instruction set computer (RISC) processor during the semester.

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ward, Steve
Date Added:
02/01/2009
Continuum Electromechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1981 by MIT Press, Continuum Electromechanics, courtesy of MIT Press and used with permission, provides a solid foundation in electromagnetics, particularly conversion of energy between electrical and mechanical forms. Topics include:

electrodynamic laws, electromagnetic forces, electromechanical kinematics, charge migration, convection, relaxation, magnetic diffusion and induction interactions, laws and approximations of fluid mechanics, static equilibrium, electromechanical flows, thermal and molecular diffusion, and streaming interactions. The applications covered include transducers, rotating machines, Van de Graaff machines, image processing, induction machines, levitation of liquid metals, shaping of interfaces in plastics and glass processing, orientation of ferrofluid seals, cryogenic fluids, liquid crystal displays, thunderstorm electrification, fusion machines, magnetic pumping of liquid metals, magnetohydrodynamic power generation, inductive and dielectric heating, electrophoretic particle motion, electrokinetic and electrocapillary interactions in biological systems, and electron beams.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Melcher, James
Date Added:
02/01/2009
Cybersecurity Presentation Series: Part 1 USB Flash Drive Encryption
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Have you ever felt uneasy or even dreadful after losing a USB flash drive that might contain sensitive information or data about your business?

This presentation will give you a tool to put you at ease when backing up a large number of files and data to a USB flash drive or stick. The tool is relatively easy to use on a USB drive, is based on encryption technology, and protects your business data from the prying eyes.

Attendees will learn about the following topics:
- A brief introduction to data encryption.
- A few encryption tools for a novice user.
- Demonstration on how to use an encryption/decryption tool called VeraCrypt to protect the data on a USB
flash drive.
- Pros and cons of encryption/decryption technology.

Subject:
Applied Science
Career and Technical Education
Computer Science
Computing and Information
Education
Educational Technology
Electronic Technology
Technology
Material Type:
Diagram/Illustration
Lecture
Unit of Study
Author:
Henry S. Teng
Date Added:
04/03/2024
D-Lab: Energy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

D-Lab: Energy offers a hands-on, project-based approach that engages students in understanding and addressing the applications of small-scale, sustainable energy technology in developing countries where compact, robust, low-cost systems for generating power are required. Projects may include micro-hydro, solar, or wind turbine generators along with theoretical analysis, design, prototype construction, evaluation and implementation. Students will have the opportunity both to travel to Nicaragua during spring break to identify and implement projects.
D-Lab: Energy is part of MIT's D-Lab program, which fosters the development of appropriate technologies and sustainable solutions within the framework of international development.
This course is an elective subject in MIT’s undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Cultural Geography
Electronic Technology
Engineering
Environmental Science
Environmental Studies
Physical Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Banzaert, Amy
Gandhi, Amit
Date Added:
02/01/2011
Design and Manufacturing I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E.
From its beginnings in 1970, the 2.007 final project competition has grown into an Olympics of engineering.  See this MIT News story for more background, a photo gallery, and videos about this course.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Frey, Daniel
Gossard, David
Date Added:
02/01/2009