Updating search results...

Search Resources

11 Results

View
Selected filters:
  • measurement
Aviation Maintenance Technician Handbook – General (FAA-H-8083-30B)
Unrestricted Use
Public Domain
Rating
0.0 stars

The Aviation Maintenance Technician Handbook–General (FAA-H-8083-30B) was developed as one of a series of three handbooks for persons preparing for mechanic certification with airframe or powerplant ratings, or both. It is intended that this handbook will provide basic information on principles, fundamentals, and technical procedures in the subject matter areas common to both the airframe and powerplant ratings. Emphasis in this volume is on theory and methods of application. The handbook is designed to aid students enrolled in a formal course of instruction preparing for FAA certification as a maintenance technician as well as for current technicians who wish to improve their knowledge. This volume contains information on mathematics, aircraft drawings, weight and balance, aircraft materials, processes and tools, physics, electricity, inspection, ground operations, and FAA regulations governing the certification and work of maintenance technicians. New to this volume is a section addressing how successful aviation maintenance technicians incorporate knowledge and awareness of ethics, professionalism and human factors in the field

Subject:
Career and Technical Education
Material Type:
Textbook
Provider:
Federal Aviation Administration
Date Added:
11/02/2014
Ethnic Politics II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is designed mainly for political science graduate students conducting or considering conducting research on identity politics. While 17.504 Ethnic Politics I is designed as a primarily theoretical course, Ethnic Politics II switches the focus to methods. It aims to familiarize the student with the current conventional approaches as well as major challenges to them. The course discusses definition and measurement issues as well as briefly addressing survey techniques and modeling.

Subject:
Anthropology
Political Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Petersen, Roger
Date Added:
02/01/2007
Experimental Projects I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I (this course) and 16.622 Experimental Projects II. This site offers material on 16.621. In the course, two-person teams initiate a project of their own conception and design in 16.621 and then complete it in 16.622. For many students, this is a first encounter with research standards and techniques. It is a complicated course that requires a lot of interaction and support and also access to facilities and materials, but it is rewarding for students to explore an hypothesis under the guidance of a faculty advisor.
This OCW site presents the building block materials of the course, which can provide only a profile of the course because the most important learning elements are the interactions between student team, faculty, project advisor, and shop staff and also between student team members. However, this site offers some of the preparation and guidance materials for students embarking on an experimental project. To emphasize the focus on communication skills, a set of study materials and examples of student work are provided.

Subject:
Applied Science
Computer Science
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Craig, Jennifer
Deyst, John
Greitzer, Edward
Murman, Earll
Date Added:
02/01/2003
Experimental Projects II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I and 16.622 Experimental Projects II (this course). Students in 16.622 gain practical insight and improved understanding of engineering experimentation through design and execution of "project" experiments. Building upon work in course 16.621, students construct and test equipment, make systematic experimental measurements of phenomena, analyze data, and compare theoretical predictions with results. Deliverables comprise a written final project report and formal oral presentations. Instructions on oral presentations and multi-section reporting are given. Experimental Projects I and II provide a valuable link between theory (16.621) and practice (16.622).

Subject:
Applied Science
Computer Science
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Craig, Jennifer
Deyst, John
Greitzer, Edward
Date Added:
09/01/2003
Introduction to Architecture & Environmental Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a foundation to the design of the environment from the scale of the object, to the building to the larger territory. The design disciplines of architecture as well as urbanism and landscape are examined in context of the larger influence of the arts and sciences. Students are expected to develop skills in thinking and analysis, spatial representation, and design methodologies. Through lectures and design exercises, students are provided an opportunity to establish a reference for understanding the discipline of architecture and environmental design, and are given an introduction to design fundamentals and the design process.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bello Gomez, Lorena
Date Added:
02/01/2014
Math, Grade 6, Distributions and Variability
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Distributions and Variability

Type of Unit: Project

Prior Knowledge

Students should be able to:

Represent and interpret data using a line plot.
Understand other visual representations of data.

Lesson Flow

Students begin the unit by discussing what constitutes a statistical question. In order to answer statistical questions, data must be gathered in a consistent and accurate manner and then analyzed using appropriate tools.

Students learn different tools for analyzing data, including:

Measures of center: mean (average), median, mode
Measures of spread: mean absolute deviation, lower and upper extremes, lower and upper quartile, interquartile range
Visual representations: line plot, box plot, histogram

These tools are compared and contrasted to better understand the benefits and limitations of each. Analyzing different data sets using these tools will develop an understanding for which ones are the most appropriate to interpret the given data.

To demonstrate their understanding of the concepts, students will work on a project for the duration of the unit. The project will involve identifying an appropriate statistical question, collecting data, analyzing data, and presenting the results. It will serve as the final assessment.

Subject:
Mathematics
Statistics and Probability
Material Type:
Unit of Study
Provider:
Pearson
Math, Grade 6, Surface Area and Volume
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Surface Area and Volume

Type of Unit: Conceptual

Prior Knowledge

Students should be able to:

Identify rectangles, parallelograms, trapezoids, and triangles and their bases and heights.
Identify cubes, rectangular prisms, and pyramids and their faces, edges, and vertices.
Understand that area of a 2-D figure is a measure of the figure's surface and that it is measured in square units.
Understand volume of a 3-D figure is a measure of the space the figure occupies and is measured in cubic units.

Lesson Flow

The unit begins with an exploratory lesson about the volumes of containers. Then in Lessons 2–5, students investigate areas of 2-D figures. To find the area of a parallelogram, students consider how it can be rearranged to form a rectangle. To find the area of a trapezoid, students think about how two copies of the trapezoid can be put together to form a parallelogram. To find the area of a triangle, students consider how two copies of the triangle can be put together to form a parallelogram. By sketching and analyzing several parallelograms, trapezoids, and triangles, students develop area formulas for these figures. Students then find areas of composite figures by decomposing them into familiar figures. In the last lesson on area, students estimate the area of an irregular figure by overlaying it with a grid. In Lesson 6, the focus shifts to 3-D figures. Students build rectangular prisms from unit cubes and develop a formula for finding the volume of any rectangular prism. In Lesson 7, students analyze and create nets for prisms. In Lesson 8, students compare a cube to a square pyramid with the same base and height as the cube. They consider the number of faces, edges, and vertices, as well as the surface area and volume. In Lesson 9, students use their knowledge of volume, area, and linear measurements to solve a packing problem.

Subject:
Geometry
Mathematics
Material Type:
Unit of Study
Provider:
Pearson
Mechatronics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Trumper, David
Date Added:
09/01/2014
Quantitative Reasoning & Statistical Methods for Planners I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course develops logical, empirically based arguments using statistical techniques and analytic methods. Elementary statistics, probability, and other types of quantitative reasoning useful for description, estimation, comparison, and explanation are covered. Emphasis is on the use and limitations of analytical techniques in planning practice.

Subject:
Mathematics
Social Science
Statistics and Probability
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Glenn, Ezra
Date Added:
02/01/2009
Strobe Project Laboratory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a laboratory experience course with a focus on photography, electronic imaging, and light measurement, much of it at short duration. In addition to teaching these techniques, the course provides students with experience working in a laboratory and teaches good work habits and techniques for approaching laboratory work. A major purpose of 6.163 is to provide students with many opportunities to sharpen their communication skills: oral, written, and visual.

Subject:
Applied Science
Arts and Humanities
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Visual Arts
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bales, James
Date Added:
09/01/2005
Triangle Golf Tee Game
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit will introduce students to measurement and using a drill press, bandsaw and scroll saw. Students will be designing and creating a triangle golf tee game as an intro to tool usage.

Subject:
Engineering
Material Type:
Activity/Lab
Author:
Devon Rupp
Matthew Bova
Date Added:
07/24/2023