Updating search results...

Search Resources

9 Results

View
Selected filters:
  • kinetic-theory
Amorphous Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course discusses the fundamental material science behind amorphous solids, or non-crystalline materials. It covers formation of amorphous solids; amorphous structures and their electrical and optical properties; and characterization methods and technical applications.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Hu, Juejun
Date Added:
09/01/2015
Concord Consortium: Making and Breaking Bonds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners explore factors that cause atoms to form (or break) bonds with each other. The first simulation depicts a box containing 12 identical atoms. Using a slider to add heat, students can see the influence of temperature on formation of diatomic bonds. Simulations #2 and #3 introduce learners to reactions involving two types of atoms. Which atom forms a diatomic molecule more easily, and why? The activity concludes as students explore paired atoms (molecules). In this simulation they compare the amount of energy needed to break the molecular bonds to the energy needed to form the bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Introduction to Plasma Physics I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways.
The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites.
The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magnetic fields, plasma confinement schemes, MHD models, simple equilibrium and stability analysis. It also covers two-fluid hydrodynamic plasma models, wave propagation in a magnetic field, kinetic theory, Vlasov plasma model, electron plasma waves and Landau damping, ion-acoustic waves, and streaming instabilities. A subject description tailored to fit the background and interests of the attending students is distributed shortly before and at the beginning of the subject.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Freidberg, Jeffrey
Hutchinson, Ian
Date Added:
09/01/2003
Introduction to Plasma Physics I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Parker, Ron
Date Added:
09/01/2006
Ionized Gases
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course highlights the properties and behavior of low-temperature plasmas in relation to energy conversion, plasma propulsion, and gas lasers. The course includes material on the equilibrium (energy states, statistical mechanics, and relationship to thermodynamics) and kinetic theory of ionized gases (motion of charged particles, distribution function, collisions, characteristic lengths and times, cross sections, and transport properties). In addition, the course discusses gas surface interactions (thermionic emission, sheaths, and probe theory) and radiation in plasmas and diagnostics.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Lozano, Paulo
Martinez-Sanchez, Manuel
Date Added:
09/01/2014
Physical Chemistry II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.
Acknowledgements
The staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Field, Robert
Griffin, Robert
Date Added:
02/01/2008
Physics I: Classical Mechanics with an Experimental Focus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton's laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Dourmashkin, Peter
Scholberg, Kate
Date Added:
09/01/2002
Reactions & Rates
Unrestricted Use
CC BY
Rating
0.0 stars

Explore what makes a reaction happen by colliding atoms and molecules. Design experiments with different reactions, concentrations, and temperatures. When are reactions reversible? What affects the rate of a reaction?

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Linda Koch
Mindy Gratny
Ron LeMaster
Trish Loeblein
Date Added:
11/15/2007
States of Matter
Unrestricted Use
CC BY
Rating
0.0 stars

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction potential to the forces between molecules.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Kathy Perkins
Noah Podolefsky
Paul Beale
Sarah McKagan
Trish Loeblein
Wendy Adams
Date Added:
07/18/2011