Updating search results...

Search Resources

4 Results

View
Selected filters:
  • dielectric
Electromagnetic Fields, Forces, and Motion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena.
Acknowledgments
The instructor would like to thank Thomas Larsen and Matthew Pegler for transcribing into LaTeX the homework problems, homework solutions, and exam solutions.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Zahn, Markus
Date Added:
02/01/2009
Electromagnetic Fields, Forces, and Motion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.641 examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena.
Acknowledgement
The instructor would like to thank Thomas Larsen for transcribing into LaTeX selected homework problems, homework solutions, and exams.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Zahn, Markus
Date Added:
02/01/2005
Radiative Transfer
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Environmental Science
Environmental Studies
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chen, Gang
Date Added:
02/01/2006
Video Demonstrations in Lasers and Optics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource contains demonstrations used to illustrate the theory and applications of lasers and optics. A detailed listing of the topics can be found below.
Lasers today are being used in an ever-increasing number of applications. In fact, there is hardly a field that has not been touched by the laser. Lasers are playing key roles in the home, office, hospital, factory, outdoors, and theater, as well as in the laboratory.
To learn about lasers and related optics, one usually takes a course or two, or acquires the necessary information from books and journal articles. To make this learning more vivid and more exciting, and, one hopes, more understandable, one needs to see some of the basic phenomena involved. To fill this need, Professor Ezekiel has videotaped 48 demonstrations that illustrate most of the fundamental phenomena relating to lasers and physical optics.
By using split-screen inserts and a wide range of video-recording capabilities, it is possible to show real-time effects in lasers and optics with the simultaneous manipulation of the components that cause these effects. In this way, one can see effects in close up that would be difficult, if not impossible, to display in front of an audience or in the classroom.
These video demonstrations are designed for:

The individual student of lasers and optics who wants to observe the various phenomena covered in theoretical treatments in courses, books, and technical papers.
The Instructor in lasers and optics in a company, university, college, or high school who wants to illustrate, in class, many of the fundamental phenomena in optics and lasers.

These videos were produced by the MIT Center for Advanced Engineering Study.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ezekiel, Shaoul
Date Added:
02/01/2008