Updating search results...

Search Resources

15 Results

View
Selected filters:
  • cooling
Continental Climate and Oceanic Climate
Unrestricted Use
CC BY
Rating
0.0 stars

This activity proposes different small experiments and discussions to show that in the summer it is cooler by the sea than on the land and that water cools off more slowly than soil.

Subject:
Oceanography
Physical Geography
Physical Science
Material Type:
Activity/Lab
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Leiden Observatory
Date Added:
01/01/2016
Environmental Technologies in Buildings
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the thermal, luminous, and acoustic behavior of buildings, examining the basic scientific principles underlying these phenomena and introducing students to technologies and analysis techniques for designing comfortable indoor environments. Students are challenged to apply these techniques and explore the role light, energy, and sound can play in shaping architecture.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Career and Technical Education
Environmental Science
Environmental Studies
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Reinhart, Christoph
Date Added:
09/01/2018
Heat Transfer Lesson
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore heat transfer and energy efficiency using the context of energy efficient houses. They gain a solid understanding of the three types of heat transfer: radiation, convection and conduction, which are explained in detail and related to the real world. They learn about the many ways solar energy is used as a renewable energy source to reduce the emission of greenhouse gasses and operating costs. Students also explore ways in which a device can capitalize on the methods of heat transfer to produce a beneficial result. They are given the tools to calculate the heat transferred between a system and its surroundings.

Subject:
Applied Science
Ecology
Engineering
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Physics
Space Science
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Hot Cans and Cold Cans
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply the concepts of conduction, convection and radiation as they work in teams to solve two challenges. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately human body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same 30-minute time period. Students design their engineering solutions using only common everyday materials, and test their devices by recording the water temperatures in their two soda cans every five minutes.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Integration of Reactor Design, Operations, and Safety
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Subject:
Applied Science
Career and Technical Education
Economics
Engineering
Environmental Science
Environmental Studies
Physical Science
Physics
Political Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Apostolakis, George
Ballinger, Ronald
Kadak, Andrew
Todreas, Neil
Date Added:
09/01/2006
Introduction to Civil and Environmental Engineering Design I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this sophomore design course, you will be challenged with three design tasks: a first concerning water resources/treatment, a second concerning structural design, and a third focusing on the conceptual (re)design of a large system, Boston's Back Bay. The first two tasks require the design, fabrication and testing of hardware. Several laboratory experiments will be carried out and lectures will be presented to introduce students to the conceptual and experimental basis for design in both domains.
This course was based in large part on the Fall 2005 offering of 1.101, developed by Prof. Harold Hemond.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bucciarelli, Louis
Einstein, Herbert
Nepf, Heidi
Date Added:
09/01/2006
Introduction to Civil and Environmental Engineering Design I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This sophomore-level course is a project-oriented introduction to the principles and practice of engineering design. Design projects and exercises are chosen that relate to the built and natural environments. Emphasis is placed on achieving function and sustainability through choice of materials and processes, compatibility with natural cycles, and the use of active or adaptive systems. The course also encourages development of hands-on skills, teamwork, and communication; exercises and projects engage students in the building, implementation, and testing of their designs.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bucciarelli, Louis
Frankel, Sheila
Hemond, Harold
Nepf, Heidi
Date Added:
09/01/2005
Keep It Hot!
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams design insulated beverage bottles with the challenge to test them to determine which materials (and material thicknesses) work best at insulating hot water to keep it warm for as long as possible. Students test and compare their designs in still air and under a stream of moving air from a house fan.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brendan Higgins
Duff Harrold
Nadia Richards
Travis Smith
Date Added:
09/18/2014
Let's Get Breezy!
Read the Fine Print
Educational Use
Rating
0.0 stars

With the assistance of a few teacher demonstrations (online animation, using a radiometer and rubbing hands), students review the concept of heat transfer through convection, conduction and radiation. Then they apply an understanding of these ideas as they use wireless temperature probes to investigate the heating capacity of different materials sand and water under heat lamps (or outside in full sunshine). The experiment models how radiant energy drives convection within the atmosphere and oceans, thus producing winds and weather conditions, while giving students the hands-on opportunity to understand the value of remote-sensing capabilities designed by engineers. Students collect and record temperature data on how fast sand and water heat and cool. Then they create multi-line graphs to display and compare their data, and discuss the need for efficient and reliable engineer-designed tools like wireless sensors in real-world applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Constance Garza
Mounir Ben Ghalia
Date Added:
10/14/2015
Newton's Law of Cooling
Read the Fine Print
Educational Use
Rating
0.0 stars

Students come to see the exponential trend demonstrated through the changing temperatures measured while heating and cooling a beaker of water. This task is accomplished by first appealing to students' real-life heating and cooling experiences, and by showing an example exponential curve. After reviewing the basic principles of heat transfer, students make predictions about the heating and cooling curves of a beaker of tepid water in different environments. During a simple teacher demonstration/experiment, students gather temperature data while a beaker of tepid water cools in an ice water bath, and while it heats up in a hot water bath. They plot the data to create heating and cooling curves, which are recognized as having exponential trends, verifying Newton's result that the change in a sample's temperature is proportional to the difference between the sample's temperature and the temperature of the environment around it. Students apply and explore how their new knowledge may be applied to real-world engineering applications.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Karl Abdelnour
Nicole Abaid
Robert Eckhardt
Date Added:
09/18/2014
Rocket Propulsion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class focuses on chemical rocket propulsion systems for launch, orbital, and interplanetary flight. It studies the modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse, and nozzle flows including real gas and kinetic effects will also be covered. Other topics to be covered include structural constraints, propellant feed systems, turbopumps, and combustion processes in solid, liquid, and hybrid rockets.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Martinez-Sanchez, Manuel
Date Added:
09/01/2005
Rooftop Gardens
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore whether rooftop gardens are a viable option for combating the urban heat island effect. Can rooftop gardens reduce the temperature inside and outside houses? Teams each design and construct two model buildings using foam core board, one with a "green roof" and the other with a black tar paper roof. They measure and graph the ambient and inside building temperatures while under heat lamps and fans. Then students analyze the data and determine whether the rooftop gardens are beneficial to the inhabitants.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Swamp Cooler
Read the Fine Print
Educational Use
Rating
0.0 stars

Using a household fan, cardboard box and paper towels, student teams design and build their own evaporative cooler prototype devices. They learn about the process that cools water during the evaporation of water. They make calculations to determine a room's cooling load, and thus determine the swamp cooler size. This activity adds to students' understanding of the behind-the-scenes mechanical devices that condition and move air within homes and buildings for human health and comfort.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
What's Hot and What's Not?
Read the Fine Print
Educational Use
Rating
0.0 stars

With the help of simple, teacher-led demonstration activities, students learn the basic physics of heat transfer by means of conduction, convection, and radiation. They also learn about examples of heating and cooling devices, from stove tops to car radiators, that they encounter everyday in their homes, schools, and modes of transportation. Since in our everyday lives there are many times that we want to prevent heat transfer, students also consider ways that conduction, convection, and radiation can be reduced or prevented from occurring.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
When Should I Drink My Hot Chocolate?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as food science engineers as they explore and apply their understanding of cooling rate and specific heat capacity by completing two separate, but interconnected, tasks. In Part 1, student groups conduct an experiment to explore the cooling rate of a cup of hot chocolate. They collect and graph data to create a mathematical model that represents the cooling rate, and use an exponential decay regression to determine how long a person should wait to drink the cup of hot chocolate at an optimal temperature. In Part 2, students investigate the specific heat capacity of the hot chocolate. They determine how much energy is needed to heat the hot chocolate to an optimal temperature after it has cooled to room temperature. Two activity-guiding worksheets are included.

Subject:
Algebra
Chemistry
Mathematics
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Palacios
Date Added:
02/17/2017